首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cortical neurons display network-level dynamics with unique spatiotemporal patterns that construct the backbone of processing information signals and contribute to higher functions. Recent years have seen a wealth of research on the characteristics of neuronal networks that are sufficient conditions to activate or cease network functions. Local field potentials (LFPs) exhibit a scale-free and unique event size distribution (i.e., a neuronal avalanche) that has been proven in the cortex across species, including mice, rats, and humans, and may be used as an index of cortical excitability. In the present study, we induced seizure activity in the anterior cingulate cortex (ACC) with medial thalamic inputs and evaluated the impact of cortical excitability and thalamic inputs on network-level dynamics. We measured LFPs from multi-electrode recordings in mouse cortical slices and isoflurane-anesthetized rats.

Results

The ACC activity exhibited a neuronal avalanche with regard to avalanche size distribution, and the slope of the power-law distribution of the neuronal avalanche reflected network excitability in vitro and in vivo. We found that the slope of the neuronal avalanche in seizure-like activity significantly correlated with cortical excitability induced by γ-aminobutyric acid system manipulation. The thalamic inputs desynchronized cingulate seizures and affected the level of cortical excitability, the modulation of which could be determined by the slope of the avalanche size.

Conclusions

We propose that the neuronal avalanche may be a tool for analyzing cortical activity through LFPs to determine alterations in network dynamics.  相似文献   

2.

Background  

Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma = 1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task.  相似文献   

3.
4.
Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in relation to different drives, neuronal states and microscopic mechanisms of charge storage and release in neuronal networks.  相似文献   

5.
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.  相似文献   

6.
We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity-independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.  相似文献   

7.
The properties of the avalanche processes that develop on a dynamical lattice, the structure of links in which changes due to a specific characteristic of each lattice node, namely, its “activity,” which determines the probability of connection of a certain node with neighboring nodes in one step of lattice evolution. The statistics of the sizes of the avalanches appearing in the lattice system is studied as a function of the node activity and the link lifetime (the lifetime of the links formed in the system). It is analytically and numerically shows that the type of avalanche dynamics in the system changes as a function of these parameters. The following three regimes can take place in the system: (1) avalanches of any sizes, from small to catastrophic, can appear, which is reflected in the power-law behavior of the probability density function of the appearance of avalanches of certain sizes; (2) avalanches of a certain average size mainly appear in the system, and the probability density is close to that of a normal distribution; and (3) transient regime, where the probability density function of the appearance of avalanches of certain sizes is close to an exponential function. These results open up the possibilities of controlling the behavior of a complex system; in particular, they can be used to prevent catastrophic avalanches by changing the link lifetime and the average node activity.  相似文献   

8.

Background

Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn), we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP) from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state) with those at increasing concentrations of isoflurane, enflurane and halothane.

Results

Cortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects) both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction).

Conclusions

The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the quantification of these effects in terms of XApEn has a similar discriminatory power as changes of spontaneous action potential rates. Thus, XApEn of field potentials recorded from local cortical networks provides valuable information on the anesthetic state of the brain.
  相似文献   

9.
The propagation of an interfacial crack along a heterogeneous weak plane of a transparent Plexiglas block is followed using a high resolution fast camera. We show that the fracture front dynamics is governed by local and irregular avalanches with very large size and velocity fluctuations. We characterize the intermittent dynamics observed, i.e., the local pinnings and depinnings of the crack front by measuring the local waiting time fluctuations along the crack front during its propagation. The deduced local front line velocity distribution exhibits a power law behavior, P(v) alpha v-eta with eta=2.55+/-0.15, for velocities v larger than the average front speed . The burst size distribution is also a power law, P(S) alpha S-gamma with gamma=1.7+/-0.1. Above a characteristic length scale of disorder Ld approximately 15 microm, the avalanche clusters become anisotropic providing an estimate of the roughness exponent of the crack front line, H=0.66.  相似文献   

10.
The song of dunes as a wave-particle mode locking   总被引:2,自引:0,他引:2  
Singing dunes, which emit a loud sound as they avalanche, constitute a striking and poorly understood natural phenomenon. We show that, on the one hand, avalanches excite elastic waves at the surface of the dune, whose vibration produces the coherent acoustic emission in the air. The amplitude of the sound (approximately 105 dB) saturates exactly when the vibration makes the grains take off the flowing layer. On the other hand, we show that the sound frequency (approximately 100 Hz) is controlled by the shear rate inside the sand avalanche, which for granular matter is equivalent to the mean rate at which grains make collisions. This proves the existence of a feedback of elastic waves on particle motion, leading to a partial synchronization of the avalanching sand grains. It suggests that the song of dunes results from a wave-particle mode locking.  相似文献   

11.
The stabilization of avalanches on dynamical networks has been studied. Dynamical networks are networks where the structure of links varies in time owing to the presence of the individual “activity” of each site, which determines the probability of establishing links with other sites per unit time. An interesting case where the times of existence of links in a network are equal to the avalanche development times has been examined. A new mathematical model of a system with the avalanche dynamics has been constructed including changes in the network on which avalanches are developed. A square lattice with a variable structure of links has been considered as a dynamical network within this model. Avalanche processes on it have been simulated using the modified Abelian sandpile model and fixed-energy sandpile model. It has been shown that avalanche processes on the dynamical lattice under study are more stable than a static lattice with respect to the appearance of catastrophic events. In particular, this is manifested in a decrease in the maximum size of an avalanche in the Abelian sandpile model on the dynamical lattice as compared to that on the static lattice. For the fixed-energy sandpile model, it has been shown that, in contrast to the static lattice, where an avalanche process becomes infinite in time, the existence of avalanches finite in time is always possible.  相似文献   

12.
Using time-resolved measurements of local magnetization in the molecular magnet Mn12Mn12-ac, we report studies of magnetic avalanches (fast magnetization reversals) with non-planar propagating fronts, where the curved nature of the magnetic fronts is reflected in the time-of-arrival at micro-Hall sensors placed at the surface of the sample. Assuming that the avalanche interface is a spherical bubble that grows with a radius proportional to time, we are able to locate the approximate ignition point of each avalanche in a two-dimensional cross-section of the crystal. We find that although in most samples the avalanches ignite at the long ends, as found in earlier studies, there are crystals in which ignition points are distributed throughout an entire weak region near the center, with a few avalanches still originating at the ends.  相似文献   

13.
Michal Bregman 《Physica A》2008,387(10):2328-2336
A surprisingly large number of systems in nature are thought to be governed by internal dynamics which causes avalanches of various sizes. In such systems energy, which is delivered from outside, is redistributed as a result of the occurrence of localized avalanches. Starting an avalanche requires that some threshold condition be satisfied. Random driving (energy input) brings the system into a strongly inhomogeneous state, so that the probability of triggering an avalanche in a large part of the system is small. In most physical systems energy redistribution may occur due to diffusive processes without avalanches. Diffusion also makes the system more uniform, making large avalanche triggering more probable. The observed behavior of a such system may crucially depend on the competition between diffusion and driving. In this paper, the effects of diffusive processes are investigated using a dissipative, isotropic one-dimensional model, in which avalanches can propagate in both directions. It is shown that the system behavior changes progressively as the diffusion rate increases. In the absence of diffusion, many small avalanches are triggered. Increasing the diffusion rate gradually suppresses these small avalanches and leads to the development of large, quasi-periodic bursts.  相似文献   

14.
Synchronized neuronal activity has been observed at all levels of human and any other nervous systems and was suggested as particularly relevant in information processing and coding. In the present paper we investigate the synchronization of bursting neuronal activity. Motivated by the fact that in neural systems the interplay between the network structure and the dynamics taking place on it is closely interrelated, we develop a spatial network representation of neural architecture in which we can tune the network organization between a scale-free network with dominating long-range connections and a homogeneous network with mostly adjacent neurons connected. Our results reveal that the most synchronized response is obtained for the intermediate regime where long- as well as short-range connections constitute the neural architecture. Moreover, the optimal response is additionally enhanced when the speed of signal propagation is optimized.  相似文献   

15.
Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.  相似文献   

16.
Epileptic seizures are considered to result from a sudden change in the synchronization of firing neurons in brain neural networks. We have used an in vitro model of status epilepticus (SE) to characterize dynamical regimes underlying the observed seizure-like activity. Time intervals between spikes or bursts were used as the variable to construct first-return interpeak or interburst interval plots, for studying neuronal population activity during the transition to seizure, as well as within seizures. Return maps constructed for a brief epoch before seizures were used for approximating the local system dynamics during that time window. Analysis of the first-return maps suggests that intermittency is a dynamical regime underlying the observed epileptic activity. This type of analysis may be useful for understanding the collective dynamics of neuronal populations in the normal and pathological brain.  相似文献   

17.
An all-wet femtosecond laser microprocessing technique was utilized for patterning and cutting functional network of living neuronal cells on a multi-electrode dish (MED). The neuronal cells cultured on a source substrate were transferred onto an electrode in a MED probe in solution by utilizing a femtosecond laser-induced impulsive force and a pattern of neuronal cells were formed on the MED probe. The cellular activity of the detached neurons was supported that neurites could be regenerated around the electrodes. As another processing method, the neurons stretching between electrodes were selectively cut by the direct femtosecond laser irradiation and the spontaneous electrical activity of the neuronal network was evaluated. While the spontaneous action potentials of neurons were synchronized before the cutting, the synchronization disappeared after the cutting, indicating that the neuronal network is locally disconnected by the laser cutting. The present method is applicable to artificial reconstruction of living neuronal network.  相似文献   

18.
Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque cortical network. In the absence of information transmission delay the bursting activity is desynchronized,giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchronization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain. Moreover,it shows that the type of synchronous bursting is uniquely determined by the delay length,with the transitions from one type to the other occurring in a step-like manner depending on the delay. Interestingly,as the delay is tuned close to the transition points,the synchronization deteriorates,which implies the coexistence of different bursting attractors. These phenomena can be observed by different but fixed coupling strengths,thus indicating a new role for information transmission delays in realistic neuronal networks.  相似文献   

19.
We investigate a renormalization group (RG) scheme for avalanche automata introduced recently by Pietroneroet al. to explain universality in self-organized criticality models. Using a modified approach, we construct exact RG equations for a one-dimensional model whose detailed dynamics is exactly solvable. We then investigate in detail the effect of approximations inherent in a practical implementation of the RG transformation where exact dynamical information is unavailable.  相似文献   

20.
The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection and information transmission in neural systems.Moreover,the complex electrical activities of a cell can induce time-varying electromagnetic fields,of which the internal fluctuation can change collective electrical activities of neuronal networks.However,in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among neurons on the collective dynamics of the complex system.Therefore,modeling each node by imposing electromagnetic radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work to the understanding of these network dynamics.In this paper,we construct a small-world network consisting of excitatory neurons and inhibitory neurons,in which the effect of electromagnetic induction that is considered by using magnetic flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling.According to our proposed network model,we investigate the effect of induced electric field generated by magnetic stimulation on the transition of bursting phase synchronization of neuronal system under electromagnetic radiation.It is shown that the intensity and frequency of the electric field can induce the transition of the network bursting phase synchronization.Moreover,we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation intensity,where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling strength.The presented results may have important implications for the theoretical study of magnetic stimulation technology,thus promoting further development of transcranial magnetic stimulation(TMS) as an effective means of treating certain neurological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号