首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
细乳液聚合法制备磁性复合微球及其表征   总被引:16,自引:7,他引:16  
在制备超细Fe3O4 磁性粒子的基础上 ,以 3种低分子量聚合物Disperbyk 1 0 6、Disperbyk 1 0 8和Disperbyk 1 1 1为Fe3O4 微粒在单体相中的分散稳定剂 ,采用细乳液聚合法制备了平均粒径为 3 40nm的PS Fe3O4 磁性复合微球 .详细研究了分散剂种类对细乳液聚合制备磁性复合微球的影响 ,并采用XRD、TGA和TEM等手段对磁性复合微球的形态、结构及磁响应性等进行了表征 .实验结果证明分散剂的选择对磁性复合微球的成功制备起着至关重要的作用 ,兼具酸性和碱性功能基的分散剂Disperbyk 1 0 6具有更好的分散和稳定效果 .TEM结果表明 ,所制备的复合微球具有一些缺陷 ,而缺陷处往往是Fe3O4 磁性粒子聚集的地方  相似文献   

2.
分散聚合法制备液相芯片聚苯乙烯磁性复合微球的研究   总被引:1,自引:0,他引:1  
本文将丙烯酸基磁流体均匀分散到苯乙烯单体中,采用分散聚合法制备出了适于构建液相芯片微球载体的单分散性微米级磁性微球.考察了丙烯酸基磁流体预处理时间、加料顺序和单体量对微球形貌和粒径分布的影响及其条件优化.扫描电镜(SEM)显示磁性微球平均粒径为7.77 μm,具有良好的单分散性(多分散指数PDI为1.03),并且表面光滑致密;用超导量子干涉磁强计测量了Fe3O4纳米粒子的磁化曲线;用红外光谱(FT-IR)和热失重(TG)方法表征了磁性微球的化学结构及Fe3O4含量.  相似文献   

3.
以壳聚糖与正硅酸四乙酯为原料,采用溶胶-凝胶法,用戊二醛辅助交联合成了磁性壳聚糖硅胶复合微球。通过红外光谱、扫描电镜、X-射线衍射等方法对磁性壳聚糖硅胶复合微球的形态和组成特性进行分析,制备的磁性复合微球中壳聚糖与硅胶材料复合均匀,材料粒径均一,机械强度较高。考察了制备的磁性壳聚糖硅胶复合微球对Cu~(2+)的吸附性能,结果表明微球对Cu~(2+)具有较好的吸附性能,吸附容量达到98.7mg/g。  相似文献   

4.
采用化学共沉淀法制备Fe3O4磁性纳米粒子;用柠檬酸钠进行表面修饰得到在水相中稳定分散的Fe3O4溶胶。以Fe3O4磁性纳米粒子为种子,用碱催化正硅酸四乙酯水解、缩合制备了粒径和磁性可控的核壳结构的Fe3O4@SiO2复合微球。通过FT-IR,XRD,TEM,VSM和古埃磁天平对Fe3O4@SiO2复合微球进行表征。研究了SiO2包覆对Fe3O4@SiO2复合微球性能的影响。  相似文献   

5.
功能化磁性高分子复合微球作为一种新型功能材料,在许多领域具有广阔的应用前景。本文对近年来功能化磁性高分子复合微球的制备方法进行了总结,对当前不同方法的优缺点进行了评价与分析;对功能化磁性高分子复合微球在生物工程领域,医学领域,环境、食品领域和功能材料领域进行了阐述。并综合分析了磁性微球在各个领域的优势及已经取得的成果。最后,展望了功能化磁性高分子复合微球的发展前景,提出自己的观点,并列出亟待解决的四个问题。  相似文献   

6.
免疫磁性纳米微球的制备与表征   总被引:1,自引:0,他引:1  
王斌 《化学通报》2015,78(9):847-850
成功制备了Fe3O4磁性纳米颗粒及二甲基丙烯酸乙二醇酯-甲基丙烯酸(EGDMA-MAA)共聚物包覆的Fe3O4磁性复合微球。将吲哚美辛抗体固定在复合微球表面,形成了Fe3O4(核)/聚合物-抗体(壳)的复合免疫磁性颗粒。XRD结果表明,制备的Fe3O4的晶型为反立方尖晶石型且纯度较高;TEM表征表明Fe3O4粒径较为均匀,平均粒径为12nm;磁性复合微球的平均直径为460nm。制备的Fe3O4磁性纳米颗粒和磁性复合微球有较强的磁响应强度,其饱和磁化率分别为49.16和8.38emu/g,能够满足磁性分离的要求。FT IR验证了磁性复合微球中羧基特征峰的存在,表明羧基成功连接在磁性微球上面。通过碳二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)活化法将微球表面羧基活化并成功与抗吲哚美辛抗体交联。  相似文献   

7.
采用多步包覆法在自制的240nm的单分散SiO2微球表面进行β-FeOOH的包覆,在5wt%的NaOH溶液中去除核心SiO2后,得到β-FeOOH纳米结构空心微球。将单分散的β-FeOOH空心球作为内核,十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,经水解缩聚反应得到空心核壳复合微球。在空气中焙烧(500℃,5h)对样品去除模板剂,并在还原气氛(5%H2/95%Ar,350℃,3h)下焙烧得到介孔SiO2/Fe3O4中空磁性复合微球。结果表明,所制得的介孔SiO2/Fe3O4中空磁性复合微球中的Fe3O4层厚度约60nm,是由Fe3O4纳米棒搭接而成的三维网络结构,复合微球的整体平均直径为390nm,比表面积较高约693m2·g-1,孔体积为0.63cm3·g-1,平均孔径为3.6nm,其饱和磁化强度可达13.6emu·g-1,同时较低的矫顽力(50Oe)有利于颗粒的再分散。  相似文献   

8.
采用双原位细乳液聚合工艺,将疏水改性的磁性纳米粒子(MNP)加入到细乳液反应体系的油相中,利用增长的聚合物和单体TEOS之间的相分离原理,实现了聚合物的生成和TEOS的水解缩合同步进行,一步获得了磁性SiO2/PSt中空复合微球.通过红外光谱(FTIR)、透射电镜(TEM)、热重差热分析(TGA/DSC)和振动磁强计(VSM)对中空复合微球进行了表征.结果表明,制备的SiO2/PSt中空复合微球的尺寸范围为300~600 nm,当加入磁性纳米粒子后,得到的磁性SiO2/PSt中空微球保持了原来的中空结构,中空复合微球内腔的大小可以通过改变单体TEOS的加入量来控制.SiO2/PSt中空微球对磁性纳米粒子的包封率达到了86%.磁性SiO2/PSt中空复合微球具有超顺磁性,饱和磁强度值为14.7 emu/g.  相似文献   

9.
用超声波分散处理Fe3O4粉末同稳定剂溶液的分散体系,使Fe3O4粉末能稳定地分散成细微粒子,同时增强了Fe3O4细微粒子同单体、引发剂的亲合性。苯乙烯—丙烯醛共聚物为高分子壳层,包裹Fe3O4得到了带醛基的磁性高分子复合微球。微球粒径可控制在50~200μm,微球中Fe3O4含量在0.4~1.5%之间,通过电导滴定法测定微球表面醛基含量在0.04~0.1mmoL·g-1范围内。着重考察了引发剂体系、稳定剂体系、分散介质等对微球粒径、表面醛基含量的影响。  相似文献   

10.
两种磁性复合微球的制备及其性能对比   总被引:1,自引:1,他引:1  
为了得到蛋白吸附性能良好的免疫磁性载体,文章用反相微乳的方法合成了壳聚糖磁性复合微球(Chitosanmagneticcompositemicrospheres简称CMCM),与常用的单体聚合法制备的聚苯乙烯磁性复合微球(Polystyrenemagneticcompositemicrospheres,简称PMCM)从粒径和表观形貌、微球铁含量、磁响应性、表面官能基团等性质做了对比表征,结果表明,CMCM是一种比PMCM更理想的免疫磁性微球载体材料。  相似文献   

11.
丁玲  李曦  张超灿 《化学研究》2010,21(1):19-22
以纳米级四氧化三铁为磁性载体,以苯乙烯为单体,用微悬浮聚合法制备了聚苯乙烯磁性微球;以牛血清白蛋白(BSA)为模型蛋白,用荧光光谱仪和紫外-可见吸收光谱仪研究了磁性微球与BSA的相互作用.结果表明,磁性微球与BSA结合反应的猝灭机理为静态猝灭.  相似文献   

12.
磁微球负载氯化血红素仿酶催化剂制备及催化降解DMP   总被引:2,自引:0,他引:2  
采用超声辅助反向共沉淀法制得磁纳米Fe3O4颗粒,然后以磁纳米Fe3O4颗粒为种子采用种子乳液聚合法制得羟基功能化的磁纳米复合物微球,再以三聚氯氰为桥联剂键合氯化血红素制得磁微球负载氯化血红素仿酶催化剂.利用傅里叶变换红外光谱仪(FT-IR)、配置积分球的紫外-可见(UV-Vis)分光光度计、透射电子显微镜(TEM)、热重分析仪(TGA)和振动样品磁强计(VSM)对催化剂进行了表征.结果表明,催化剂粒径大小为10~12 nm,粒度均一,分散性好,在300 K下具有一定顺磁性,饱和磁化强度为21.61 emu/g,磁性物质含量为52.50%.催化剂在紫外光照和H2O2存在下对水中邻苯二甲酸二甲酯(DMP)有较高的氧化降解活性,且重复使用效果较好.  相似文献   

13.
通过蒸馏-沉淀聚合制备了丙烯酸-二乙烯苯共聚物微球,经离子交换吸附Fe2+离子,然后通过空气中加热、氩气气氛中高温碳化得到了含Fe3O4纳米粒子的多孔磁性碳化微球。在水介质中多孔磁性碳化微球吸附氯金酸,然后还原得到内含金纳米粒子的磁性碳化微球。以硼氢化钠还原对硝基苯酚生成对氨基苯酚反应为例,研究了内含金纳米粒子的磁性碳化微球的催化作用。结果表明,内含金纳米粒子的磁性碳化微球对该反应有很好的催化作用。通过外磁场很容易将磁性微球从反应液相中分离出来,微球重复使用10次后其催化活性基本未变。  相似文献   

14.
首先将(马来酸酐-醋酸乙烯酯共聚物)核/(马来酸酐-二乙烯基苯共聚物)壳微球的壳层外表面酐基烷基溴化,然后将核溶蚀、壳层内表面酐基水解,制得内表面含亲水羧基、外表面含烷基溴、具有微孔(Barrett-Joyner-Halenda平均孔径14.9nm)的空心聚合物微球.以此空心微球为微反应器,使Fe2+和Fe3+通过球壁...  相似文献   

15.
A kind of cellulose magnetic nanoparticle with a core / shell structure has been prepared by ultrasonic irradiation. Cellulose acts as the shell while Fe3O4 magnetic nanoparticles take the role as the core. Magnetic force microscopy(MFM)with atomic force microscopy(AFM)measurement showed that the size of the magnetic nanoparticles is about 30-50 nm in diameter,while the Fe3O4 core is about 20-30 nm. FT-IR,XRD and MFM was used to provide the chemical and magnetic information of the nanoparticles. The MFM image showed that the nanoparticles separate very well with each other,indicating the cellulose shell produces a good prevention from the aggregation of the Fe3O4 particles. MFM studies also showed two magnetic nanoparticles can form particle-pairs,indicating a weak magneto-dipole interaction between magnetic nanoparticles. It is also found that the average sizes of magnetic nanoparticles have relation to the power of ultrasonic irradiation,and the possible mechanism is discussed.  相似文献   

16.
Glycoproteins are useful biomarkers and therapeutic targets for a number of diseases, including infections and cancer. However, identification and isolation of low‐abundant glycoproteins remains a significant challenge that limits their application. Thus, methods of specific and selective glycoprotein enrichment are required. In this study, novel phenylboronic acid functionalized magnetic microspheres were successfully synthesized. Fe3O4 microspheres were synthesized by using a hydrothermal method and were coated with tetraethyl orthosilicate using an ultrasonic method to form a core‐shell structure. Compared to the conventional mechanical stirring for 12 h, the ultrasonic method saved about 7 h in processing time, and the home‐made magnetic microspheres had better dispersibility and homogeneity. Subsequently, the magnetic microspheres were modified by addition of an amino group and a carboxyl group, in sequence. Finally, 3‐aminophenylboronic acid, as the functional monomer, was linked to the magnetic microspheres for capturing glycoprotein/glycopeptides. The results of this study indicate that phenylboronic acid functionalized magnetic microspheres show excellent adsorption performance toward glycoprotein/glycopeptides. The maximum absorbing capacity of the microspheres for fetuin was 108 mg/g, and the enrichment efficiency reached 89.7%, indicating their potential to separate and enrich glycoproteins from the complex biological samples.  相似文献   

17.
"The composites of hollow glass microspheres coated with NiFe2O4 nanoparticles were prepared using polyacrylamide gel method. The structural characteristics, morphology and electromagnetic properties of the composite powders with different weight percent of glass microspheres (15%, 40%, and 65%) were obtained by X-ray diffraction, scanning electron microscope, infrared spectroscopy and HP8510 network analyzer. The results indicated that the phase structure of composite powders was the mixtures of nickel ferrite, quartz, and mullite. The peak intensity for nickel ferrite decreased rapidly and for mullite increased remarkably with the increasing amount of microspheres. A pure spinel structure of NiFe2O4 formed on the glass microspheres at 600 oC. A uniform and continuous NiFe2O4-coating was obtained when the content of microspheres was 40%. A great amount of NiFe2O4 particle size is less than 80 nm. The composite with a content of 40% microspheres exhibits better dielectric and magnetic loss properties which are useful to absorb more electromagnetic wave. It can be a kind of good and light electromagnetic wave absorbing material in the X-band."  相似文献   

18.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

19.
Magnetic poly(styrene-co-acrylic acid-co-acrylamide) microspheres were prepared by water-in-oil-in-water (W/O/W) miniemulsion polymerization of monomers in the presence of Fe3O4 nanoparticles. The copolymerizable monomers of acrylic acid and acrylamide were used not only to modify the surfaces of the microspheres with functional groups, but also to act as viscosity regulators to control the morphology and size of these microspheres. It was experimentally observed that the surfaces of these microspheres were functionalized with NH2 groups produced by copolymerization, the morphologies (sphere, ringlike, and one-hole) of the microspheres were controlled by the concentration of copolymerizable monomers, and all samples prepared were superparamagnetic. The possible mechanism of formation of these magnetic microspheres is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号