首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hybrid grouping genetic algorithm for bin packing   总被引:11,自引:0,他引:11  
The grouping genetic algorithm (GGA) is a genetic algorithm heavily modified to suit the structure of grouping problems. Those are the problems where the aim is to find a good partition of a set or to group together the members of the set. The bin packing problem (BPP) is a well known NP-hard grouping problem: items of various sizes have to be grouped inside bins of fixed capacity. On the other hand, the reduction method of Martello and Toth, based on their dominance criterion, constitutes one of the best OR techniques for optimization of the BPP to date.In this article, we first describe the GGA paradigm as compared to the classic Holland-style GA and the ordering GA. We then show how the bin packing GGA can be enhanced with a local optimization inspired by the dominance criterion. An extensive experimental comparison shows that the combination yields an algorithm superior to either of its components.  相似文献   

2.
Many real life problems can be stated as a minimax problem, such as economics, finance, management, engineering and other fields, which demonstrate the importance of having reliable methods to tackle minimax problems. In this paper, an algorithm for linearly constrained minimax problems is presented in which we combine the trust-region methods with the line-search methods and curve-search methods. By means of this hybrid technique, it avoids possibly solving the trust-region subproblems many times, and make better use of the advantages of different methods. Under weaker conditions, the global and superlinear convergence are achieved. Numerical experiments show that the new algorithm is robust and efficient.  相似文献   

3.
This paper presents a hybrid evolutionary algorithm for the two-dimensional non-guillotine packing problem. The problem consists of packing many rectangular pieces into a single rectangular sheet in order to maximize the total area of the pieces packed. Moreover, there is a constraint on the maximum number of times that a piece may be used in a packing pattern. The set of packing patterns is processed by an evolutionary algorithm. Three mutation operators and two types of quality functions are used in the algorithm. The best solution obtained by the evolutionary algorithm is used as the initial solution in a tree search improvement procedure. This approach is tested on a set of benchmark problems taken from the literature and compared with the results published by other authors.  相似文献   

4.
In this paper, we consider the two-dimensional variable-sized bin packing problem (2DVSBPP) with guillotine constraint. 2DVSBPP is a well-known NP-hard optimization problem which has several real applications. A mixed bin packing algorithm (MixPacking) which combines a heuristic packing algorithm with the Best Fit algorithm is proposed to solve the single bin problem, and then a backtracking algorithm which embeds MixPacking is developed to solve the 2DVSBPP. A hybrid heuristic algorithm based on iterative simulated annealing and binary search (named HHA) is then developed to further improve the results of our Backtracking algorithm. Computational experiments on the benchmark instances for 2DVSBPP show that HHA has achieved good results and outperforms existing algorithms.  相似文献   

5.
6.
1. IntroductionIt is a useful and challenging task to find efficient algorithms for many computationalhard problems. Recently, the research on Fixed-Parameter nactable Theory arouses muchinterest. FOr example, different fixed- p ax amet er- t rac t ab le- algori t hms for many well- knowndecisio11 pruble11ls illc1udi11g 3-dimellsio11al IIlatchiIlg: a11d vertex--cover Problen1 have beenPrese11ted in [1 8]. Jia11er Chen, DoIlald K. FYiesen al1d Weijia Jia proPosed a coll1pletelynew appro…  相似文献   

7.
A circle packing algorithm   总被引:1,自引:0,他引:1  
A circle packing is a configuration P of circles realizing a specified pattern of tangencies. Radii of packings in the euclidean and hyperbolic planes may be computed using an iterative process suggested by William Thurston. We describe an efficient implementation, discuss its performance, and illustrate recent applications. A central role is played by new and subtle monotonicity results for “flowers” of circles.  相似文献   

8.
《Optimization》2012,61(4):1057-1080
In this paper, a novel hybrid glowworm swarm optimization (HGSO) algorithm is proposed. The HGSO algorithm embeds predatory behaviour of artificial fish swarm algorithm (AFSA) into glowworm swarm optimization (GSO) algorithm and combines the GSO with differential evolution on the basis of a two-population co-evolution mechanism. In addition, to overcome the premature convergence, the local search strategy based on simulated annealing is applied to make the search of GSO approach the true optimum solution gradually. Finally, several benchmark functions show that HGSO has faster convergence efficiency and higher computational precision, and is more effective for solving constrained multi-modal function optimization problems.  相似文献   

9.
Constrained Optimization Problems (COP) often take place in many practical applications such as kinematics, chemical process optimization, power systems and so on. These problems are challenging in terms of identifying feasible solutions when constraints are non-linear and non-convex. Therefore, finding the location of the global optimum in the non-convex COP is more difficult as compared to non-convex bound-constrained global optimization problems. This paper proposes a Hybrid Simulated Annealing method (HSA), for solving the general COP. HSA has features that address both feasibility and optimality issues and here, it is supported by a local search procedure, Feasible Sequential Quadratic Programming (FSQP). We develop two versions of HSA. The first version (HSAP) incorporates penalty methods for constraint handling and the second one (HSAD) eliminates the need for imposing penalties in the objective function by tracing feasible and infeasible solution sequences independently. Numerical experiments show that the second version is more reliable in the worst case performance.  相似文献   

10.
Penalty and interior-point methods for nonlinear optimization problems have enjoyed great successes for decades. Penalty methods have proved to be effective for a variety of problem classes due to their regularization effects on the constraints. They have also been shown to allow for rapid infeasibility detection. Interior-point methods have become the workhorse in large-scale optimization due to their Newton-like qualities, both in terms of their scalability and convergence behavior. Each of these two strategies, however, have certain disadvantages that make their use either impractical or inefficient for certain classes of problems. The goal of this paper is to present a penalty-interior-point method that possesses the advantages of penalty and interior-point techniques, but does not suffer from their disadvantages. Numerous attempts have been made along these lines in recent years, each with varying degrees of success. The novel feature of the algorithm in this paper is that our focus is not only on the formulation of the penalty-interior-point subproblem itself, but on the design of updates for the penalty and interior-point parameters. The updates we propose are designed so that rapid convergence to a solution of the nonlinear optimization problem or an infeasible stationary point is attained. We motivate the convergence properties of our algorithm and illustrate its practical performance on large sets of problems, including sets of problems that exhibit degeneracy or are infeasible.  相似文献   

11.
In situations where it is not feasible to find an optimal feedback control law for a stochastic system, an open-loop law can often be derived by optimization. This article presents a method of finding the extremum of certain stochastic functionals analogous to the steepest descent method. Necessary conditions for the convergence of the algorithm are given. Two examples illustrate the use of the algorithm.This research was supported by the Office of Naval Research, Contract No. Nonr-1866 (16) and by the National Aeronautics and Space Administration, Grant No. NGR-22-007-068.  相似文献   

12.
In this paper, the feasible type SQP method is improved. A new SQP algorithm is presented to solve the nonlinear inequality constrained optimization. As compared with the existing SQP methods, per single iteration, in order to obtain the search direction, it is only necessary to solve equality constrained quadratic programming subproblems and systems of linear equations. Under some suitable conditions, the global and superlinear convergence can be induced.  相似文献   

13.
In the classical two-dimensional bin packing problem one is asked to pack a set of rectangular items, without overlap and without any rotation, into the minimum number of identical square bins. We give an approximation algorithm with absolute worst-case ratio of 3.  相似文献   

14.
This paper proposes a new algorithm for a two-dimensional packing problem first studied by Baker, Coffman, and Rivest (SIAM J. Comput. 9, No. 4(1980), 846–855). In their model, a finite list of rectangles is to be packed into a rectangular bin of finite width but infinite height. The model has applications to certain scheduling and stock-cutting problems. Since the problem of finding an optimal packing is NP-hard, previous work has been directed at finding polynomial approximation algorithms for the problem, i.e., algorithms which come within a constant times the height used by an optimal packing. For the algorithm proposed in this paper, the ratio of the height obtained by the algorithm and the height used by an optimal packing is asymptotically bounded by 5/4. This bound is an improvement over the bound of 4/3 achieved by the best previous algorithm.  相似文献   

15.
A heuristic algorithm for the strip packing problem   总被引:1,自引:0,他引:1  
The two-dimensional strip packing problem is to pack a given set of rectangles into a strip with a given width and infinite height so as to minimize the required height of the packing. From the computational point of view, the strip packing problem is an NP-hard problem. With the B*-tree representation, this paper first presents a heuristic packing strategy which evaluates the positions used by the rectangles. Then an effective local search method is introduced to improve the results and a heuristic algorithm (HA) is further developed to find a desirable solution. Computational results on randomly generated instances and popular test instances show that the proposed method is efficient for the strip packing problem.  相似文献   

16.
We develop ideas to enhance the performance of the variable neighborhood search (VNS) by guiding the search in the shaking phase, and by employing the Skewed strategy. For this purpose, Second Order algorithms and Skewed functions expressing structural differences are embedded in an efficient VNS proposed in the literature for the degree constrained minimum spanning tree problem. Given an undirected graph with weights associated with its edges, the degree constrained minimum spanning tree problem consists in finding a minimum spanning tree of the given graph, subject to constraints on node degrees. Computational experiments are conducted on the largest and hardest benchmark instances found in the literature to date. We report results showing that the VNS with the proposed strategies improved the best known solutions for all the hardest benchmark instances. Moreover, these new best solutions significantly reduced the gaps with respect to tight lower bounds reported in the literature.  相似文献   

17.
We desire to find a correlation matrix of a given rank that is as close as possible to an input matrix R, subject to the constraint that specified elements in must be zero. Our optimality criterion is the weighted Frobenius norm of the approximation error, and we use a constrained majorization algorithm to solve the problem. Although many correlation matrix approximation approaches have been proposed, this specific problem, with the rank specification and the constraints, has not been studied until now. We discuss solution feasibility, convergence, and computational effort. We also present several examples.  相似文献   

18.
A trust region algorithm for equality constrained optimization   总被引:2,自引:0,他引:2  
A trust region algorithm for equality constrained optimization is proposed that employs a differentiable exact penalty function. Under certain conditions global convergence and local superlinear convergence results are proved.  相似文献   

19.
20.
In this paper, we modify a derivative-free line search algorithm (DFL) proposed in the Ref. (Liuzzi et al. SIAM J Optimiz 20(5):2614–2635, 2010) to minimize a continuously differentiable function of box constrained variables or unconstrained variables with nonlinear constraints. The first-order derivatives of the objective function and of the constraints are assumed to be neither calculated nor explicitly approximated. Different line-searches are used for box-constrained variables and unconstrained variables. Accordingly the convergence to stationary points is proved. The computational behavior of the method has been evaluated on a set of test problems. The performance and data profiles are used to compare with DFL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号