首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider the plasma maser theory of whistler waves in the presence of ion cyclotron waves in a magnetized plasma. In a plasma with low frequency ion cyclotron turbulence and a high frequency test whistler wave, growth of the whistler wave takes place because of the turbulent bremsstrahlung interaction between the resonant electrons and the modulated electric fields. The growth rate of the whistler wave is calculated and the results discussed.  相似文献   

2.
A theoretical investigation on amplification of electrostatic ion acoustic wave in magnetically confined plasma has been presented in this paper. This investigation considers nonlinear wave–particle interaction process, called plasma maser effect, in presence of drift wave turbulence supported by magnetically confined inhomogeneous plasma. The role of associated nonlinear dissipative force in this effect in a confined plasma has been analyzed. The nonlinear force, which arises as a result of resonant interaction between electrons and modulated fields, is shown to drive the instability. Using the ion fluid equation and the ion equation of continuity, the nonlinear dispersion relation of a test ion acoustic wave has been derived, and the growth rate of ion acoustic wave in presence of low frequency drift wave turbulence has been estimated using Helimak data.  相似文献   

3.
This report presents a theoretical model of extraordinary mode radiation in presence of low frequency whistler mode. We show that the generation mechanism of extraordinary mode emission in the presence of whistler mode is based on the plasma maser theory. Application of theoretical results to Jovian Kilometric radiation is examined.  相似文献   

4.
吴坚强 《强激光与粒子束》2004,16(11):1463-1467
 利用自洽线性场理论,导出了薄环形相对论电子注通过填充等离子体的介质同轴波导中的注波互作用色散方程,得到了注波互作用产生切伦科夫辐射的同步条件和波增长率。分析了填充等离子体后的波与电子注之间的能量交换及等离子体密度对色散特性、波增长率和注波能量交换的影响。分析结果表明:切伦科夫辐射是由沿介质同轴波导传播的慢波与沿薄环形相对论电子注传播的负能空间电荷波耦合所致,且其耦合强度与电子注的密度成正比;输出频率和波增长率随着填充等离子体密度的增大而提高;保持一定的输出频率,增大电子注的束流可得到高的微波输出功率。  相似文献   

5.
The introduction of a strongly magnetized plasma in the inner region of a free electron laser opens up the possibility of generating coherent radiation in the slow whistler mode using mildly relativistic electron beams. The frequency of emission, however, is limited to below the electron cyclotron frequency. The efficiency of the device can be enhanced by tapering the guide magnetic field  相似文献   

6.
We study the cyclotron interaction of energetic electrons and whistler waves in plasma waveguides formed by inhomogeneous distribution of cold plasma. Such waveguides can be formed in the Earth's magnetosphere, e.g., by the plasmapause or by ducts with enhanced background-plasma density. In this paper, we consider a cylindrically symmetric model of a magnetospheric duct with enhanced cold-plasma density in a homogeneous magnetic field. The spatial structure of the eigenmodes of such a waveguide is found. We obtain a set of self-consistent quasilinear equations for cyclotron instability with eigenmode structure taken into account, thus generalizing the quasilinear theory of a magnetospheric cyclotron maser.  相似文献   

7.
A gyrating ion beam, with a ring-shaped distribution in velocity, supports negative energy beam modes near the harmonics of beam gyro-frequency. An investigation of the non-linear interaction of high-frequency whistler waves with the negative energy beam cyclotron mode is made. A non-linear dispersion relation is derived for the coupled modes. It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a side band of frequency lower than that of pump wave. In Case 2 a high-amplitude whistler wave decays into two lower frequency daughter waves, called the low-frequency mode and whistler waves. Generation mechanism of these waves has application in space and laboratory plasmas.  相似文献   

8.
The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.  相似文献   

9.
Despite the widely discussed role of whistler waves in mediating magnetic reconnection (MR), the direct connection between such waves and the MR has not been demonstrated by comparing the characteristic temporal and spatial features of the waves and the MR process. Using the whistler wave dispersion relation, we theoretically predict the experimentally measured rise time (τ(rise)) of a few microseconds for the fast rising MR rate in the Versatile Toroidal Facility at MIT. The rise time is closely given by the inverse of the frequency bandwidth of the whistler waves generated in the evolving current sheet. The wave frequencies lie much above the ion cyclotron frequency, but they are limited to less than 0.1% of the electron cyclotron frequency in the argon plasma. The maximum normalized MR rate R=0.35 measured experimentally is precisely predicted by the angular dispersion of the whistler waves.  相似文献   

10.
The plasma chaotic system is a dissipative dynamical system modeled by a parametric plasma instability arising from the interaction of the whistler and ion acoustic waves with the plasma oscillation near the lower hybrid resonance. The amplitudes of these three oscillations obey a three-dimensional system of ordinary differential equations that exhibits chaos for certain parameter values. Besides the maximal Lyapunov exponent technique, a generalized-competitive-mode (GCM) technique has been proposed to evaluate parameter values associated with chaos. A mechanical analysis has also been proposed to reveal the mechanisms underlying the different dynamical modes including chaos. In a series of comparisons between the GCM analysis and mechanical analysis, chaos for the plasma chaotic system is determined. The mechanism and causes by which the plasma chaotic system produces different dynamical behaviors are interpreted. Furthermore, using the whistler-parameter variation of the Casimir function and Casimir power for the plasma system, the generating mechanisms of the different orbital modes and the different levels of chaos are uncovered.  相似文献   

11.
弱相对论等离子体横向扰动下的离子声孤波   总被引:1,自引:0,他引:1       下载免费PDF全文
段文山  洪学仁 《物理学报》2003,52(6):1337-1339
在低阶近似下,得到了描述无磁场相对论热离子等离子体的KP(Kadomtsev-Petviashvilli) 方程.研究表明,相对论热离子等离子中的非线性离子声孤波在高阶横向拢动下是稳定的, 且在相对论热离子等离子体中仅存在压缩型孤波. 关键词: 离子等离子体 孤波 声波 约化摄动法  相似文献   

12.
The Korteweg-de Vries equation for a weakly relativistic ion acoustic wave propagating in oollisionless plasma containing nonthermal electron, positron and warm ion is derived. The effects of the ion temperature, nonthermal parameter and relativistic effect on the amplitude, width and energy of soliton are studied.  相似文献   

13.
The generation of relativistic electromagnetic solitons in plasma with spatiotemporal density modulation is investigated. When two counter-propagating laser pulses overlap in underdense plasma, the interaction between the pulses and plasma modulates the electron and ion densities resulting in localized, stable, long-living relativistic electromagnetic solitons. They are caused by the Stimulated Raman Scattering instability. The dependence of the formation of relativistic electromagnetic solitons on the ion motion, plasma parameters, and laser parameters is studied by particle-in-cell simulations as well.  相似文献   

14.
A N Dev  M K Deka  J Sarma  D Saikia  N C Adhikary 《中国物理 B》2016,25(10):105202-105202
The stationary solution is obtained for the K–P–Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev–Petviashvili(K–P) equation, threedimensional(3D) Burgers equation, and K–P–Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave(DIASW). The K–P equation predictes the existences of stationary small amplitude solitary wave,whereas the K–P–Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.  相似文献   

15.
The amplification mechanism of the ion-channel laser (ICL) in the low-gain regime is studied. In this concept, a relativistic electron beam is injected into a plasma whose density is comparable to or lower than the beam's density. The head of the electron beam pushes out the plasma electrons, leaving an ion channel. The ion-focusing force causes the electrons to oscillate (betatron oscillations) about the axis and plays a role similar to the magnetic field in a cyclotron autoresonance maser (CARM). Radiation can be produced with wave frequencies from microwaves to X-rays depending on the beam energy and plasma density: ω~2γ3/2ωpe, where γ is the Lorentz factor of the beam and ωpe is the plasma frequency. Transverse (relativistic) bunching and axial (conventional) bunching are the amplification mechanisms in ICLs; only the latter effect operates in free-electron lasers. The competition of these two bunching mechanisms depends on beam velocity ν0z; their dependences on ν0z cancel for the cyclotron autoresonance masers. A linear theory is developed to study the physical mechanisms, and a PIC (particle-in-cell) simulation code is used to verify the theory. The mechanism is examined as a possible explanation for experimentally observed millimeter radiation from relativistic electron beams interacting with plasmas  相似文献   

16.
李海容  唐昌建  王顺金 《中国物理 B》2010,19(12):124101-124101
This paper addresses the formulae and numerical issues related to the possibility that fast wave may be grown when a relativistic electron beam through an ion channel in a cylindrical metal waveguide.To derive the dispersion equations of the beam-wave interaction,it solves relativistic Lorentz equation and Maxwell’s equations for appropriate boundary conditions.It has been found in this waveguide structure that the TM 0m modes are the rational operating modes of coupling between the electromagnetic modes and the betatron modes.The interaction of the dispersion curves of the electromagnetic TM 0m modes and the upper betatron modes is studied.The growth rates of the wave are obtained,and the effects of the beam radius,the beam energy,the plasma frequency,and the beam plasma frequency on the wave growth rate are numerically calculated and discussed.  相似文献   

17.
徐民健  吴京生 《物理学报》1985,34(9):1119-1125
本文分析了下述情况下的电子迴旋波的激射不稳定性:当相对性的单能高能电子斜向注入具有背景等离子体的磁场区域内,并且在电子等离子体频率与电子迴旋频率可以比拟时,考虑了背景等离子体密度远大于单能的高能电子的密度,以及与前者相反的两种情况。当单能的高能电子具有弱相对论性效应时,在电子迴旋频率的基频和二次谐波附近,分别有ο模和χ模的不稳定性存在。文中计算了这两种模的增长率,并作了讨论。 关键词:  相似文献   

18.
《Physics letters. A》2005,336(6):477-489
By numerically solving the exact dispersion equation, the dispersion relation of symmetrical TM waves propagating in a Čerenkov maser including a thin annular relativistic electron beam (TAREB), a strongly magnetized plasma column, and a dielectric rod is investigated. The effects of accelerating voltage, radii of TAREB and plasma column as well, on the frequency spectra and spatial growth-rate coefficient are presented. The axial electric field profiles during the wave amplification and the conditions under which the spatial growth rates are maximum are presented.  相似文献   

19.
A plasma maser that does not use a strong magnetic field for transporting a relativistic highcurrent electron flow is calculated within the particle-in-cell model. Tuning of the average radiation frequency from 3 to 7GHz with a single pulse spectrum width of 2 to 3GHz is demonstrated. The power of a radiation pulse with a duration up to 70 ns is from 0.5 to 0.7GW at the efficiency of 4 to 6%.  相似文献   

20.
By employing the reductive perturbation technique, the propagation of cylindrical and spherical ion acoustic solitary waves is studied in an unmagnetized dense relativistic plasma, consisting of relativistically degenerate electrons and cold fluid ions. A modified Korteweg-de-Vries equation is derived and its numerical solutions have been analyzed to identify the basic features of electrostatic solitary structures that may form in such a degenerate Fermi plasma. Different degrees of relativistic electron degeneracy are discussed and compared. It is found that increasing number density leads to decrease the amplitude the width of the ion acoustic solitary wave in both the cylindrical and spherical geometries. The relevance of the work to the compact astrophysical objects, particularly white dwarfs is pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号