首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrorheological (ER) properties of poly(2-dodecyloxyaniline) (PDOA) suspensions in silicone oil were investigated. The ER behavior of such suspensions of polyaniline particles depends on the type of stabilizer and doping or dedoping level. Here we report on the ER behavior of particles of a substituted polyaniline with long alkyl pendants. Rheological measurements were carried out using a rotational rheometer with high-voltage generator in both constant shear stress and rate modes. Suspensions of the as-synthesized polyaniline particles in silicone oil showed a substantial ER response.  相似文献   

2.
Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.  相似文献   

3.
Complex silica-based microcapsules with nanopatterned features were made using Pickering stabilization as a fabrication tool. A sequential two-step liquid-liquid interface-driven assembly process was employed using Laponite clay discs and Laponite armored polystyrene latex particles as solids to stabilize emulsion droplets on two different length scales. The discotic Laponite particles and poly(diethoxysiloxane) were used as silica sources. The ethoxy groups of the poly(diethoxysiloxane) were removed via a triethylamine-catalyzed interfacial hydrolysis and sol-gel reaction. The organic components were removed via a calcination step. The two-stage templating route provided siliceous microcapsules of which the capsule walls were decorated on either the outside or inside with nanocapsules composed of Laponite clay.  相似文献   

4.
Pickering miniemulsion polymerization using Laponite clay as a stabilizer   总被引:1,自引:0,他引:1  
Solid-stabilized, or Pickering, miniemulsion polymerizations using Laponite clay discs as stabilizer are investigated. Free radical polymerizations are carried out using a variety of hydrophobic monomers (i.e., styrene, lauryl (meth)acrylate, butyl (meth)acrylate, octyl acrylate, and 2-ethyl hexyl acrylate). Armored latexes, of which the surfaces of the particles are covered with clay discs, are obtained, as confirmed by scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Overall polymerization kinetics of the Pickering miniemulsion polymerizations of styrene were investigated via gravimetry. Comparison with the bulk polymerization analogue clearly shows compartmentalization. Moreover, retardation effects up to intermediate monomer conversions are observed; they are more prominent for the smaller particles and are ascribed to the Laponite clay. A model is presented that allows for the prediction of the average particle size of the latexes produced as a function of the amounts of monomer and Pickering stabilizers used. It shows that under specific generic conditions the number of clay discs used correlates in a linear fashion with the total surface area of the latex particles. This is a direct result of the reversibility of the Laponite clay disc adhesion process under the emulsification conditions (i.e., sonication) used.  相似文献   

5.
Polystyrene/montmorillonite (PSt/MMT) nanocomposite latexes have been synthesized by soap-free emulsion polymerization using MMT clay platelets as stabilizer. Small amounts of methacrylic acid were used as auxiliary monomer to promote clay adhesion to the surface of the particles. Overall solids content of the composite latexes in complete absence of coagulation of up to 30.7?wt% are reported under batch conditions. The 3?wt% MMT clay platelets were sufficient to maintain the colloidal stability and increasing MMT clay content resulted in the increase of particle diameter due to the improved viscosity of reaction medium. Transmission electron microscopy results demonstrate the existence of MMT platelets on the particle surface. X-ray diffraction spectroscopy (XRD) results show that an exfoliated structure of PSt/MMT nanocomposites was obtained in this study with the absence of d001 diffraction peak of MMT in the XRD region.  相似文献   

6.
Poly(styrene‐co‐butyl acrylate) copolymers were prepared by free‐radical random copolymerization of styrene and butyl acrylate in emulsion in the presence of 10% of surface‐modified sodium montmorillonite (Na‐MMT). The objective of this work was to evaluate the impact of the clay organic modifier in terms of its chemical structure, its degree of interaction within the clay galleries surface, and its ability to copolymerize with monomers, on the morphology and properties of the final nanocomposite prepared. Na‐MMT was modified using different organic modifiers, namely: sodium 1‐allyloxy‐2‐hydroxypropyl (Cops), 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS), N‐isopropylacrylamide (NIPA), and sodium 11‐methacryloyloxy‐undecan‐1‐yl sulfate (MET), respectively. The morphology and properties of the nanocomposites obtained were found to be dependant on the clay organic modifier. X‐ray diffraction (XRD) and transmission electron microscopy indicated that, nanocomposites at 10% clay loading with Cops‐, NIPA‐, and MET‐modified clays, yielded intercalated to partially exfoliated structures, whereas AMPS‐modified clay gave a nanocomposite with a fully exfoliated structure. All polymer–clay nanocomposites were found to be more thermally stable than neat poly(S‐co‐BA) as were determined by TGA. However, nanocomposites with intercalated structures exhibited greater thermal stability relative to fully exfoliated ones. Furthermore, nanocomposites with exfoliated structures exhibited higher storage moduli (GI) than partially exfoliated once, whereas intercalated structure showed the lowest GI values. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3619–3628, 2008  相似文献   

7.
Suspensions of micrometer-sized iron particles (10 vol %) dispersed in kerosene and stabilized by addition of organoclay particles were prepared. The magnetization curves of these suspensions were measured, and their sedimentation and redispersion behaviors were analyzed as a function of clay concentration by means of optical and rheological methods. Furthermore, their magnetorheological properties were investigated using a controlled rate magnetorheometer and the effect of clay concentration on these properties was also analyzed. These experiments showed that the addition of clay slows down iron particle settling and eases the redispersion of the iron-based suspensions without masking their magnetorheological properties. Two mechanisms were found to be involved in this behavior: (i) the formation of a clay gel network and (ii) the presence of heterogeneous iron-clay adhesion.  相似文献   

8.
Starch-based biofilms containing synthetic Laponite clay and glycerol were prepared using a solvent casting technique. Electron microscopy images showed predominance of the exfoliated type of nanocomposite. Dynamic mechanical analysis revealed a larger influence of glycerol content on the polymer β relaxation and T g than the clay content. Gas barrier properties were influenced by clay particles and plasticizer content. An increase of clay content led to lower gas permeability values. Although both glycerol and Laponite are hydrophilic, no significant changes were observed on the water sorption by starch films at different relative humidity values. Mechanical properties are kept similar after the inorganic filler incorporation.  相似文献   

9.
Aqueous suspensions of Laponite, a system composed of disklike nanoparticles, are found to develop optical birefringence over several days, well after the suspensions solidified because of jamming. The optical anisotropy is particularly enhanced near the air-Laponite suspension interface over length scales of several millimeters, which is beyond 5 orders of magnitude larger than the particle length scale, suggestive of large-scale ordering influenced by the interface. The orientational order increases with time and is always greater for higher concentration of salt, higher concentration of Laponite, and higher temperatures of the suspension. Although weakly birefringent, Laponite suspensions covered by paraffin oil do not show any enhancement in optical anisotropy near the interface compared to that in the bulk. We suggest that the expedited structure formation near the air interface propagating progressively inside the sample is responsible for the observed behavior. We discuss the observed nematic ordering in the context of glass-like and gel-like microstructure associated with aqueous Laponite suspensions.  相似文献   

10.
A quartz crystal microbalance with dissipation (QCM-D) and an optical reflectometer (OR) have been used to investigate the adsorption behavior of Laponite and Ludox silica nanoparticles at the solid-liquid interface. The adsorption of both Laponite and Ludox silica onto poly(diallyldimethylammonium chloride) (PDADMAC)-coated surfaces over the first few seconds were studied by OR. Both types of nanoparticles adsorbed rapidly and obtained a stable adsorbed amount after only a few minutes. The rate of adsorption for both nanoparticle types was concentration dependent. The maximum adsorption rate of Ludox nanoparticles was found to be approximately five times faster than that for Laponite nanoparticles. The QCM data for the Laponite remained stable after the initial adsorption period at each concentration tested. The observed plateau values for the frequency shifts increased with increasing Laponite particle concentration. The QCM data for the Ludox nanoparticles had a more complex long-time behavior. In particular, the dissipation data at 3 ppm and 10 ppm Ludox increased slowly with time, never obtaining a stable value within the duration of the experiment. We postulate here that this is caused by slow structural rearrangements of the particles and the PDADMAC within the surface adsorbed layer. Furthermore, the QCM dissipation values were significantly smaller for Laponite when compared with those for Ludox for all nanoparticle concentrations, suggesting that the Laponite adsorbed layer is more compact and more rigidly bound than the Ludox adsorbed layer.  相似文献   

11.
通过大幅振荡剪切(LAOS)流变学方法, 研究了NaCl浓度对Laponite悬浮体系的结构及非线性黏弹性的影响. 在线性黏弹性区, Laponite体系的储能模量G′随着NaCl浓度的增加而逐渐增大. 体系的非线性黏弹性用响应应力的Fourier变换三次谐波的相对振幅I3/1与Lissajous曲线的定量参数GM, GL, ηM和ηL描述. 当NaCl浓度较低时, I3/1随应变振幅γ0的增加而缓慢增加; 当NaCl浓度较高时, I3/1随γ0的增加迅速增大, 达到平台值. 不同NaCl浓度试样的GM和GL随γ0变化的曲线区别不大, 但ηM和ηL随γ0变化曲线在非线性区域出现峰值且区别较大. NaCl浓度越高, ηM和ηL出现峰值的γ0越小, 峰值越大. 结果表明, Laponite凝胶的非线性黏弹性与凝胶网络结构有关, 随着NaCl浓度的增加, 粒子间的静电相互作用距离缩短, 粒子间距减小, 形成了更紧密的网络结构. 但这种网络在较大的应变下很容易被破坏, 出现非线性黏弹性.  相似文献   

12.
To suppress the repulsive interfacial energy between hydrophilic clay and a hydrophobic polymer matrix for polymer–clay nanocomposites, a third component of amphiphilic nature such as poly(?‐caprolactone) (PCL) was introduced into the styrene–acrylonitrile copolymers (SAN)/Na‐montmorillonite system. Once ?‐caprolactone was polymerized in the presence of Na‐montmorillonite, the successful ring‐opening polymerization of ?‐caprolactone and the well‐developed exfoliated structure of PCL/Na‐montmorillonite mixture were confirmed. Thereafter, SAN was melt‐mixed with PCL/Na‐montmorillonite nanocomposite, and the SAN matrix and PCL fraction were completely miscible to form a homogeneous mixture with retention of the exfoliated state of Na‐montmorillonite, exhibiting that PCL effectively stabilizes the repulsive polymer–clay interface and contributes to the improvement of the mechanical properties of nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 246–252, 2004  相似文献   

13.
The thermal behavior and overall isothermal crystallization kinetics of a series of organophilic modified montmorillonite–poly(?‐caprolactone) nanocomposites were investigated. In general, the thermal behavior was influenced more by the type of dispersion than by the clay content. For nanocomposites in which silicate platelets were predominantly dispersed in the polymer matrix to give exfoliated structures, the thermal properties were improved with respect to those of neat poly(?‐caprolactone), whereas in those cases in which simply intercalated structures were attained, the thermal properties regularly decayed as the clay content increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1321–1332, 2004  相似文献   

14.
黎白钰 《高分子科学》2014,32(2):123-129
A kind of fibrous clay, palygorskite(PAL), was used as the sole stabilizer in suspension polymerization without the using of any other stabilizer usually used, especially polymeric stabilizers. In order to improve the compatibility with the organic monomer, PAL nano fibers were organically modified with silane coupling agent methacryloxypropyltrimethoxysilane(MPS). Transmission electron microscopy(TEM) and Fourier-transform infrared(FTIR) spectroscopy results show that the hydrolyzed MPS was attached onto PAL surface through Si―O―Si bonds formation without morphology change of PAL. At a loading amount of PAL to monomer as low as 0.36 wt%, effective stabilization could be achieved. After suspension polymerization, spherical poly(methyl methacrylate)(PMMA) particles were obtained. Scanning electron microscopy(SEM) analysis on both the outer surface and the inner cracked surface of the spherical PMMA particles indicates that the PAL particles reside on the surface of the PMMA spheres. The densely stacked PAL together with attached silane coupling agent stabilized the droplets throughout the suspension polymerization.  相似文献   

15.
The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes.  相似文献   

16.
Intercalated and exfoliated models of polymer nanocomposites based on poly(epsilon-caprolactone) and functionalized montmorillonite clay are studied by means of molecular dynamics simulations. Intercalated and exfoliated models are considered for probing the structural characteristics of the corresponding nanocomposites prepared by melt intercalation and in situ polymerization, respectively. In the exfoliated system, the organization of the polymer chains onto the clay surface is examined in terms of the density profiles and the order parameter function. A layered structure can clearly be seen to form near the surface with density maxima higher than in amorphous poly(epsilon-caprolactone). This can be viewed as an increase in effective particle thickness, which can contribute to the outstanding gas barrier properties of the exfoliated nanocomposites. The comparison of the structures and energetics of the intercalated model with those of a nanocomposite model based on a nonfunctionalized clay indicates nearly similar characteristics. Nevertheless, the slight differences observed for the interfacial polymer density and clay- and surfactant-polymer binding energies can account for the differences in rheological measurements. The results also suggest that the difference in morphology obtained for the nanocomposites prepared by the two synthetic approaches can be ascribed to both a difference in interfacial polymer density and the formation of bridging polymer chain structures that hinder the exfoliation process.  相似文献   

17.
The ability of Laponite to stabilize aqueous suspensions of multiwalled carbon nanotubes (MWCNTs) was investigated with the help of analytical centrifugation, microscopic image analysis, and measurements of electrical conductivity of hybrid Laponite+MWCNT suspensions. The impact of nanotube concentration C(n) (0.0025-0.5 wt%) and Laponite/MWCNTs ratio X (varied within 0-1 wt/wt) on the properties of Laponite+MWCNT hybrid suspensions was discussed. It was observed that sonication of MWCNTs at critical minimal concentration of Laponite X(c)≈0.25±0.05 resulted in efficient dispersion and formation of stabilized suspensions of individual nanotubes. The stabilization of nanotubes in the presence of Laponite was explained by adsorption of Laponite particles and formation of a hydrophilic charged shell on the surface of nanotubes. Increase of MWCNT concentration above the critical value resulted in percolation and formation of spatially extended electrically conductive networks of particles.  相似文献   

18.
Structure transitions, induced by the interaction with the cationic surfactant cetylpyridinium chloride in nanocomposite gels of poly(acrylamide) with incorporated suspensions of the two closely related layered clays bentonite and montmorillonite, were studied. Unexpectedly, different behaviors were revealed. X-ray diffraction measurements confirm that, due to the interaction with the surfactant, initially disordered bentonite platelets arrange into highly ordered structures incorporating alternating clay platelets and surfactant bilayers. The formation of these smectic structures also in the cross-linked polymer gels, upon addition of the surfactant, is explained by the existence of preformed, poorly ordered aggregates of the clay platelets in the suspensions before the gel formation. In the case of montmorillonite, smectic ordering of the disordered platelets in the presence of the surfactant is observed only after drying the suspensions and the clay-gel composites. Rheology studies of aqueous suspensions of the two clays, in the absence of both surfactant and gel, evidence a much higher viscosity for bentonite than for montmorillonite, suggesting smaller clay-aggregate size in the latter case. Qualitatively consistent results are obtained from optical micrographs.  相似文献   

19.
Size, morphology, and apparent charge of individual Na-montmorillonite particles of natural MX-80 sodium montmorillonite were investigated in the present study by the use of three coupling methods. In the first part of this work, natural and synthetic montmorillonite clays were studied with atomic force microscopy (AFM) and photo-correlation spectroscopy (PCS). Both techniques exhibit the presence of two clay populations with a high dispersion of the length distribution. Microscopic analysis of the system revealed that clay particles could be reasonably approximated at low concentrations to ellipsoidal tactoids about 1.2 nm high. Average dimensions of the first population were typically 320-400 nm long/250 nm wide and 200-250 nm long/120 nm wide for natural and synthetic clays, respectively. The second population exhibits smaller sizes: 65 and 50 nm long and 35 and 25 nm wide for natural and synthetic clays, respectively. The statistics obtained for natural clay were then verified by PCS experiments on sodium montmorillonite suspensions. Both techniques reveal an important length dispersion. However, the relative proportions of the two kinds of particles could not be established properly because of both lack of statistics and limitations of the employed techniques. In the following part, conductivity measurements were performed on dilute montmorillonite clay suspensions. Raw data were then interpreted with the sizes and morphological information gained in the first part of the present work. The apparent charge of the clay sheets was found to be 8% of the structural charge.  相似文献   

20.
This work is devoted to the preparation of magnetite-covered clay particles in aqueous medium. For this purpose, magnetite nanoparticles were synthesized by a coprecipitation method. These magnetic particles are adhered to sodium montmorillonite (NaMt) particles in aqueous suspensions of both materials, by appropriate control of the electrolyte concentrations. The best condition to produce such heteroaggregation corresponds to acid pH and approximately 1 mol/L ionic strength, when the electrokinetic potentials (zeta-potential) of both NaMt and Fe3O4 particles have high enough and opposite sign, as demonstrated from electrophoresis measurements. When a layer of magnetite re-covers the clay particles, the application of an external magnetic field induces a magnetic moment in clay-magnetite particles parallel to the external magnetic flux density. The sedimentation behavior of such magnetic particles is studied in the absence or presence of an external magnetic field in a vertical direction. The whole sedimentation behavior is also strongly affected by the formation of big flocculi in the suspensions under the action of internal colloidal interactions. van der Waals and dipole-dipole magnetic attractions between magnetite-covered clay particles dominate the flocculation processes. The different relative orientation of the clay-magnetite particles (edge-to-edge, face-to-edge, and face-to-face) are discussed in order to predict the most favored flocculi configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号