首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new high-resolution laser Doppler anemometer (LDA) has been developed with a working distance of 350 mm, allowing operation in lab-scale wind tunnels. The measurement volume size is 35 μm in diameter by 60 μm in length, allowing resolution of the smallest turbulence scales even at fairly high Reynolds numbers. The controversial question of velocity and validation bias in LDA data is resolved with an experimental method for measuring and removing those effects. Uncertainty estimates are also derived for all the mean and Reynolds stress measurements. Received: 27 June 1999/Accepted: 30 August 2000  相似文献   

2.
 An empirical correlation for the onset of turbulence in physiological pulsatile flow is presented. We pumped three different test fluids of kinematic viscosity 0.008–0.035 cm2/s through four straight tubes 0.4–3.0 cm in diameter. A Scotch yoke mechanism provided an oscillatory sine wave flow component of known stroke volume and frequency. We adjusted the mean flow independently until we detected signal instabilities from hot film wall shear stress probes. The critical peak Reynolds number was found to correlate with the Womersley parameter and the Strouhal number as a power law function with a root-mean-square (rms) error of 15.2%. Experimental measurements of the laminar velocity profile are compared to theoretical predictions from Poiseuille’s law and Womersley’s solution. Received: 30 October 1995/Accepted: 7 April 1997  相似文献   

3.
A film-based wall shear stress sensor for wall-bounded turbulent flows   总被引:1,自引:0,他引:1  
In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film’s surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film’s material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000–130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.  相似文献   

4.
The development of steady, turbulent flow in a 90° section of a curved square duct was studied at a Reynolds number of 4 × 104 by hot-wire anemometer. The curved duct has a cross-section measuring 80 × 80 mm and a curvature radius ratio of 4 and is connected with a long, straight duct at its both ends. The longitudinal and lateral components of mean and fluctuating velocities, and the Reynolds stresses were measured by the method of rotating a probe with an inclined hot-wire. The velocity fields of the primary and secondary flows, and the Reynolds stress distributions in the cross-section were illustrated in the form of contour map. The development of the primary flow was found to be connected with a strong pressure gradient near the outer and inner wall and a secondary flow induced in the cross-section of the bend by a pressure difference between the outer and inner wall and a centrifugal force acting on the fluid; the fluid is accelerated near the inner wall and decelerated near the outer wall between the bend angle ϕ ≅ 0° and ϕ ≅ 30°, but an increase and decrease of the fluid velocity are reversed between ϕ ≅ 30° and ϕ ≅ 90°. The fluctuating velocity correlations, i.e. the Reynolds stresses follow a complicated progress according to the complex development of the primary flow. The results obtained can be available to verify various types of turbulence models and to develop new models. Received: 10 May 1999/Accepted: 15 March 2000  相似文献   

5.
An experimental study of a two-dimensional plane turbulent wall jet   总被引:1,自引:0,他引:1  
 Laser-Doppler measurements were conducted in a plane turbulent wall jet at a Reynolds number based on inlet velocity, Re 0, of 9600. The initial development as well as the fully developed flow was studied. Special attention was given to the near-wall region, including the use of small measuring volumes and the application of specific near-wall data corrections, so that wall shear stresses were determined directly from the mean velocity gradient at the wall using only data below y +=4. It was possible to resolve the inner peak in the streamwise turbulence intensity as well as the inner (negative) peak in the shear stress. Limiting values of (u′)+ and uv + were determined. Turbulence data from the outer region of the flow were compared to earlier hot wire measurements and large differences in the normal turbulence intensity and the shear stress were found. These differences can be attributed to high turbulence intensity effects on the hot-wires. Received: 17 October 1996 / Accepted: 8 December 1997  相似文献   

6.
Turbulent characteristics of shear-thinning fluids in recirculating flows   总被引:1,自引:0,他引:1  
 A miniaturised fibre optic Laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1–0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present downstream turbulence field was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. Received: 23 February 1999/Accepted: 28 April 1999  相似文献   

7.
This paper presents comprehensive measurements of wall pressure and surface shear stress beneath a plane, two-dimensional, turbulent jet impinging normally onto a flat surface. The results cover a wider range of Reynolds number and ratio of impingement height (H) to nozzle gap (D) than do previous studies. The pressure distributions are nearly Gaussian, independent of Reynolds number, and closely balance the momentum flux from the jet nozzle as H/D varies. Particular attention was paid to probe size in measuring the wall shear stress because this has a significant effect on the results. A range of Preston tubes and Stanton probes were tested from which it was found that a 0.05-mm-high Stanton probe—the smallest that we could make—appeared to give accurate results. As expected, the shape of the wall shear stress distributions depended both on H/D and on Reynolds number. Furthermore, the relation between wall pressure and shear stress from Hiemenz's theoretical solution for stagnation flow is not in agreement with the results. It is postulated that the discrepancy is due to the relatively high free-stream turbulence level in the jet. Future papers will document the mean flow field and turbulence and the time dependence of the surface pressure.  相似文献   

8.
Experimental study of flow past a square cylinder at high Reynolds numbers   总被引:4,自引:0,他引:4  
 Measurements of two-components of velocity in the wake of a square cylinder using a hot-wire anemometer are reported. Two Reynolds numbers, namely 8700 and 17,625, have been considered. The measurements were carried out in a low-speed, low-turbulence wind tunnel. Benchmark experiments at much lower Reynolds numbers show good agreement between the present experiments and published results. At higher Reynolds numbers, the experimental data reveal anticipated trends in terms of wake recovery and turbulence decay. Both velocity and velocity fluctuations show symmetry about the wake axis. The experimental data have been compared with the large eddy simulation (LES) calculation reported by Wang et al. [University of Illinois at Urbana – Champaign (1996) Report CFD 96-03] and LDV measurements of Lyn et al. [J Fluid Mech (1995) 304: 285–319]. The agreement among the three sets is generally acceptable in terms of the time-averaged velocity components, but not the velocity fluctuations. The turbulence fluctuations in the present experiments are seen to be lower than in the referred work. The differences have been traced to factors such as the aspect ratio, blockage ratio and upstream turbulence. Experiments with increased upstream turbulence did show a reduction in the discrepancy between the present experiments and the published data. An assessment of the experimental data in terms of physical mechanisms revealed that (a) streamwise normal stresses were correlated with the vortex centers, and (b) the turbulence kinetic energy profiles are similar to the turbulence shear stress. Spectral analysis of the velocity signals was carried out in the present work. Energy transfer from the mean flow to the streamwise velocity fluctuation was confirmed in the near wake. A redistribution of the kinetic energy between the streamwise and transverse components of velocity over a longer distance downstream was subsequently observed. Received: 17 May 1999/Accepted: 29 December 1999  相似文献   

9.
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8×103 to 1.0×105, with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2–3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5–6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed. The project supported by the National Natural Science Foundation of China and the Key Laboratory for Hydrodynamics of NDCST.  相似文献   

10.
A turbulent plane offset jet with small offset ratio   总被引:5,自引:0,他引:5  
 Mean velocities and turbulence characteristics of a turbulent plane offset jet with a small offset ratio of 2.125 have been studied using laser Doppler anemometry (LDA). Static pressure measurements highlight the importance of side plates in enhancing two-dimensionality of the jet. The spatial distributions of turbulence intensities and Reynolds shear stress show a high turbulence recirculating flow region close to the nozzle plate between the jet and the offset plate. The LDA results have been used to examine the capability of three different turbulence models (i.e. k–ɛ, RNG and Reynolds stress) in predicting the velocity field of this jet. While all three models are able to predict qualitatively the recirculation, converging and reattachment regions observed experimentally, the standard k–ɛ turbulence model predicts a reattachment length that best agrees with the experimentally determined value. Received: 11 September 1996/Accepted: 30 May 1997  相似文献   

11.
Large eddy simulation (LES) is carried out to investigate the turbulent boundary-layer flows over a hill-shaped model with a steep or relatively moderate slope at moderately high Reynolds numbers (Re = O(103)) defined by the hill height and the velocity at the hill height. The study focuses on the effects of surface roughness and curvature. For Sub-grid Scale (SGS) modeling of LES, both the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) are applied. The behavior of the separated shear layer and the vortex motion are affected by the oncoming turbulence, such that the shear layer comes close to the ground surface, or the size of a separation region becomes small because of the earlier instability of the separated shear layer. Appropriate measures are required to generate the inflow turbulence. The methods of Lund et al. (J. Comput. Phys., 140:233–258, 1998) and Nozawa and Tamura (J. Wind Eng. Ind. Aerodyn., 90:1151–1162, 2002; The 4th European and African Conference on Wind Engineering, 1–6, 2005) are employed to simulate the smooth- and rough-wall turbulent boundary layers in order to generate time-sequential data of inflow turbulence. This paper discusses the unsteady phenomena of the wake flows over the smooth and rough 2D hill-shaped obstacles and aims to clarify the roughness effects on the flow patterns and the turbulence statistics distorted by the hill. Numerical validation is conducted by comparing the simulation results with wind tunnel experiment data for the same hill shape at almost the same Re. The applicability of DSM and DMM are discussed, focusing on the recirculation region behind a steep hill.  相似文献   

12.
A digital holographic microscope is used to simultaneously measure the instantaneous 3D flow structure in the inner part of a turbulent boundary layer over a smooth wall, and the spatial distribution of wall shear stresses. The measurements are performed in a fully developed turbulent channel flow within square duct, at a moderately high Reynolds number. The sample volume size is 90 × 145 × 90 wall units, and the spatial resolution of the measurements is 3–8 wall units in streamwise and spanwise directions and one wall unit in the wall-normal direction. The paper describes the data acquisition and analysis procedures, including the particle tracking method and associated method for matching of particle pairs. The uncertainty in velocity is estimated to be better than 1 mm/s, less than 0.05% of the free stream velocity, by comparing the statistics of the normalized velocity divergence to divergence obtained by randomly adding an error of 1 mm/s to the data. Spatial distributions of wall shear stresses are approximated with the least square fit of velocity measurements in the viscous sublayer. Mean flow profiles and statistics of velocity fluctuations agree very well with expectations. Joint probability density distributions of instantaneous spanwise and streamwise wall shear stresses demonstrate the significance of near-wall coherent structures. The near wall 3D flow structures are classified into three groups, the first containing a pair of counter-rotating, quasi streamwise vortices and high streak-like shear stresses; the second group is characterized by multiple streamwise vortices and little variations in wall stress; and the third group has no buffer layer structures.  相似文献   

13.
用电化学方法测试动脉模型壁面剪应力   总被引:3,自引:0,他引:3  
应用电化学方法,对动脉模型T型分叉部位流场壁面剪应力进行测试研究。测试了对于现有理论分析和数值计算都比较困难的高雷诺数(RE=1000-2000)流动流场的壁面剪应力,并且对苦干不同雷诺数及不同支管分流情况进行了系列测试。通过实验发现,此部痊同时存在高剪应力区和低剪应力区,确定了它们的位置和剪应力的大上。系列测试还显示:随着雷诺数的变化,无量纲管应力有一定的变化;而当支管分流变化时,无量纲剪应力的  相似文献   

14.
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien–Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. Received on 26 April 2000  相似文献   

15.
Convective heat transfer characteristics of laminar pulsating pipe air flow   总被引:6,自引:0,他引:6  
 Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1–4 Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4 Hz) was obtained. In the frequency range of 17–25 Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5 Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1–17 Hz and a reduction up to 20% for pulsation frequency range of 25–29.5 Hz for Reynolds numbers range of 780–1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750 < Re < 2000) and the dimensionless frequency (3<Ω<18) with about 10% rms. Received on 16 May 2000 / Published online: 29 November 2001  相似文献   

16.
An Australian hard wheat flour–water dough has been characterised using parallel plate and capillary rheometers over an extensive range of apparent shear rates (10 − 3–103 s − 1) relevant to process conditions. Torsional measurements showed that the shear viscosity of the dough increased with strain to a maximum value and then decreased, suggesting a breakdown of the dough structure. Both torsional and capillary experiments revealed the shear-thinning behaviour of the dough. The wall slip phenomenon in capillary rheometry was investigated and found to be diameter dependent and occurred at a critical shear stress of approximately 5–10 kPa. A two-regime power law behaviour was observed, with the power law index approximately 0.3 in the low shear rate range increasing to 0.67 in the high shear rate range. Pressure fluctuation was observed in the capillary data and increased with shear rate, in particular, at shear rates approaching 104 s − 1. The results demonstrate that capillary rheometry is a viable means of rheologically testing dough at high shear rates provided pressure fluctuation is carefully monitored and capillary rheometry corrections, including wall slip, are accounted for.  相似文献   

17.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
 The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670–13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region. Received: 24 November 1998/Accepted: 24 August 1999  相似文献   

19.
 An estimate of the low wavenumber component of surface turbulence shear stress as a function of frequency has been obtained through measurements of the correlations of the longitudinal component of turbulence velocity made close to the surface at y +=7. The data were acquired in a fully-developed turbulent pipe flow at a Reynolds number (based on centreline velocity and pipe diameter) of 268000, using two single hot-wire anemometer probes. A novel data analysis procedure has been introduced to establish the accuracy limits of the low wavenumber turbulence energy estimate for frequencies in the similarity regime of wall turbulence and the results are compared with other measurement techniques. Received: 18 November 1993/Accepted: 21 April 1997  相似文献   

20.
The flow-induced microstructure of a mesophase pitch was studied within custom-made dies for changing wall shear rates from 20 to 1,100 s − 1, a flow scenario that is typically encountered during fiber spinning. The apparent viscosity values, measured at the nominal wall shear rates ranging from 500 to 2,500 s − 1 using these dies, remain fairly constant. The microstructure was studied in two orthogonal sections: rθ (cross section) and rz (longitudinal mid plane). In these dies, the size of the microstructure gradually decreases toward the wall (to as low as a few micrometers), where shear rate is highest. Furthermore, as observed in the rθ plane of the capillary, for a significant fraction of the cross section, discotic mesophase has a radial orientation. Thus, the directors of disc-like molecules were aligned in the vorticity (θ) direction. As confirmed from the microstructure in the rz plane, most of the discotic molecules remain nominally in the flow plane. Orientation of the pitch molecules in the shear flow conditions is consistent with that observed in controlled low-shear rheometric experiments reported earlier. Microstructral investigation suggests that the radial orientation of carbon fibers obtained from a mesophase pitch originates during flow of pitch through the die.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号