首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constitutive equations for the resultant forces and moments applied to a shell-like body necessarily couple the influences of the shell geometry and the constitutive nature of the three-dimensional material from which the shell is constructed. Consequently, even when the nonlinear constitutive equation of the three-dimensional material is known, the complicated influence of the shell geometry on the constitutive response of the shell is not known. The main objective of this paper is to develop restrictions on the constitutive equations of nonlinear elastic shells which ensure that exact solutions of the shell equations are consistent with exact nonlinear solutions of the three-dimensional equations for homogeneous deformations. Since these restrictions are nonlinear in nature they provide valuable general theoretical guidance for specific constitutive assumptions about the coupling of material and geometric properties of shells. Examples of the linear theories of a plate and a spherical shell are considered.  相似文献   

2.
Constitutive equations for the resultant forces and moments applied to a rod-like body necessarily couple the influences of the rod geometry and the constitutive nature of the three-dimensional material from which the rod was constructed. Consequently, even when the nonlinear constitutive equation of the three-dimensional material is known, the influence of the rod geometry on the constitutive response of the rod is not known. The main objective of this paper is to develop restrictions on the constitutive equations of nonlinear elastic rods which ensure that exact solutions of the rod equations are consistent with exact nonlinear solutions of the three-dimensional equations for all homogeneous deformations. Since these restrictions are nonlinear in nature they provide valuable general theoretical guidance for specific constitutive assumptions about the coupling of material and geometric properties of rods. Also, an example of a straight beam clamped at one end and subjected to a shear force at the other end is used to examine the validity of the proposed value for the transverse shear deformation coefficient.  相似文献   

3.
In the context of the direct or Cosserat theory of rods developed by Green, Naghdi and several of their co-workers, this paper is concerned with the development of a theory of small deformations which are superposed on large deformations. The resulting theory is properly invariant under all superposed rigid body motions. Furthermore, it is also valid for elastic rods which are subject to kinematical constraints, and it specializes to a linear theory of an elastic rod which is invariant under superposed rigid body motions. The construction of these theories is based on the method developed by Casey & Naghdi [1] who established similar theories for unconstrained nonpolar elastic bodies.  相似文献   

4.
A basic elasticity solution applicable to an important class of internal stress problems related, for example, to fiber-matrix composites and spalling of cylindrical coatings is obtained. The basic problem that has been solved is that of the singular stress-displacement field resulting from the introduction of a Somigliana ring dislocation in an isotropic linear elastic solid. The Burgers vector of this dislocation has two components, one being normal to the plane of the circular ring dislocation (Volterra type) and the other being in the radial direction of the ring dislocation everywhere (Somigliana type). The analytical solution, in terms of complete elliptic integrals of the first, second and third kinds, is obtained using the Love stress function and Fourier transform. The results are verified numerically and by examining various limiting cases, including the straight edge dislocation as the radius of the dislocation loop tends to infinity, the orthogonal pair of dipoles as the radius tends to zero, and the Lamé solution of a cylindrical bar and a cylindrical hole in an infinite medium as the axial location of the dislocation tends to minus infinity. The resulting analytical solution is considered as a step towards evaluating both the extended stress field around and interactions among various three-dimensional defects such as cylindrical cracks, fiber-tips and fiber-matrix debonding.  相似文献   

5.
It has been known for some time that certain radial anisotropies in some linear elasticity problems can give rise to stress singularities which are absent in the corresponding isotropic problems. Recently related issues were examined by other authors in the context of plane strain axisymmetric deformations of a hollow circular cylindrically anisotropic linearly elastic cylinder under uniform external pressure, an anisotropic analog of the classic isotropic Lamé problem. In the isotropic case, as the external radius increases, the stresses rapidly approach those for a traction-free cavity in an infinite medium under remotely applied uniform compression. However, it has been shown that this does not occur when the cylinder is even slightly anisotropic. In this paper, we provide further elaboration on these issues. For the externally pressurized hollow cylinder (or disk), it is shown that for radially orthotropic materials, the maximum hoop stress occurs always on the inner boundary (as in the isotropic case) but that the stress concentration factor is infinite. For circumferentially orthotropic materials, if the tube is sufficiently thin, the maximum hoop stress always occurs on the inner boundary whereas for sufficiently thick tubes, the maximum hoop stress occurs at the outer boundary. For the case of an internally pressurized tube, the anisotropic problem does not give rise to such radical differences in stress behavior from the isotropic problem. Such differences do, however, arise in the problem of an anisotropic disk, in plane stress, rotating at a constant angular velocity about its center, as well as in the three-dimensional problem governing radially symmetric deformations of anisotropic externally pressurized hollow spheres. The anisotropies of concern here do arise in technological applications such as the processing of fiber composites as well as the casting of metals.  相似文献   

6.
One of the most widely used constitutive models for compressible isotropic nonlinearly elastic solids is the generalized Blatz-Ko material for foam-rubber and its various specializations. For this model, a unified derivation of necessary and sufficient conditions for ellipticity of the governing three-dimensional displacement equations of equilibrium is provided. When the parameterf occurring in the generalized Blatz-Ko model is in the range 0f<1, it is shown that ellipticity is always lost at sufficiently large stretches, while forf=1, the equilibrium equations are globally elliptic. The implications of these results for a variety of physical problems are discussed.  相似文献   

7.
A one-dimensional model of a linear piezoelectric thin rod is deduced from three-dimensional piezoelectricity by introducing suitable internal constraints and appropriate hypotheses on the electric displacement field.  相似文献   

8.
A rod is regarded as a one-dimensional mathematical model of a three-dimensional body. The exact field equations governing the motion of a hyperelastic rod are derived from the general three-dimensional theory. Then, by a suitable restriction on the number of displacement variables, a hierarchy of approximating theories is established. Because such theories are generated by a kinematic hypothesis, a precise, quantitative idea of the nature of the simplifying assumptions is furnished. An analysis of the structure of these approximating theories yields three distinct approaches by which they may be interpreted. Finally, constraints and their connection with other approximate theories are investigated. In particular, classical nonlinear theories and theories for planar motion are developed in this context of constrained theories.  相似文献   

9.
An unbounded isotropic compressible neo-Hookean solid is initially in equilibrium under uniform tensile (possibly large) pre-stress. In one case, plane strain conditions generate slit crack growth at a constant sub-critical rate; in the other, axial symmetry produces penny-shaped crack growth. The procedure of superposing infinitesimal deformations upon those that are large is carried out in terms of tractable exact full-field solutions.These solutions are examined apart from a specific fracture mechanics model, nevertheless, they show that pre-stress induces, in addition to the expected anisotropy, a critical value above which a negative Poisson effect occurs. It is also found that dilatational, rotational and Rayleigh wave speeds decrease, and that the decrease is greater for the plane strain state associated with slit crack growth than for the axially symmetric state of the penny-shaped crack.Dynamic stress intensity factors are also extracted, and found to fall below those for a linear isotropic solid at the same pre-stress and crack growth rate. Moreover, the range of growth rates for sub-critical crack propagation is also decreased.  相似文献   

10.
A theory for the lateral spreading of a beam of nonlinear surface acoustic waves across the surface of an arbitrary, homogeneous, elastic half-space is developed. The resulting evolution equation generalizes that obtained for uni-directional waves by replacing an ordinary derivative by a diffusion operator of Schrödinger type. The coefficients arising in the evolution equation are related to partial derivatives of the dispersion relation for linearized surface waves on the half space. Details are given for isotropic materials and for two special cases of beams travelling along axes of high elastic symmetry.  相似文献   

11.
Non-linear plate theory for thin prismatic elastic bodies is obtained by estimating the total three-dimensional strain energy generated in response to a given deformation in terms of the small plate thickness. The Euler equations for the estimate of the energy are regarded as the equilibrium equations for the thin plate. Included among them are algebraic formulae connecting the gradients of the midsurface deformation to the through-thickness derivatives of the three-dimensional deformation. These are solvable provided that the three-dimensional strain energy is strongly elliptic at equilibrium. This framework yields restrictions of the Kirchhoff-Love type that are usually imposed as constraints in alternative formulations. In the present approach they emerge as consequences of the stationarity of the energy without the need for any a priori restrictions on the three-dimensional deformation apart from a certain degree of differentiability in the direction normal to the plate.  相似文献   

12.
A class of similarity solutions is obtained for radial motions of spherical and cylindrical bodies made of a certain type of compressible hyperelastic materials. The equations satisfied by the infinitesimal generators of the symmetry group of the unified governing first order field equations for spheres and cylinders are found. It is shown that these equations admit a special class of solutions which generate a five-parameter group of transformations. The form of the strain energy function corresponding to the resulting symmetry group is evaluated. The similarity variable is determined and ordinary differential equations satisfied by similarity solutions are obtained. Numerical solutions are given for a Ko material which falls into the class of admissible materials.  相似文献   

13.
In this paper, the nonlinear responses of a loosely constrained cantilevered pipe conveying fluid in the context of three-dimensional (3-D) dynamics are investigated. The pipe is allowed to oscillate in two perpendicular principal planes, and hence its 3-D motions are possible. Two types of motion constraints are considered. One type of constraints is the tube support plate (TSP) which comprises a plate with drilled holes for the pipe to pass through. A second type of constraints consists of two parallel bars (TPBs). The restraining force between the pipe and motion constraints is modeled by a smoothened-trilinear spring. In the theoretical analysis, the 3-D version of nonlinear equations is discretized via Galerkin’s method, and the resulting set of equations is solved using a fourth-order Runge–Kutta integration algorithm. The dynamical behaviors of the pipe system for varying flow velocities are presented in the form of bifurcation diagrams, time traces, power spectra diagrams and phase plots. Results show that both types of motion constraints have a significant influence on the dynamic responses of the cantilevered pipe. Compared to previous work dealing with the loosely constrained pipe with motions restricted to a plane, both planar and non-planar oscillations are explored in this 3-D version of pipe system. With increasing flow velocity, it is shown that both periodic and quasi-periodic motions can occur in the system of a cantilever with TPBs constraints. For a cantilevered pipe with TSP constraints, periodic, chaotic, quasi-periodic and sticking behaviors are detected. Of particular interest of this work is that quasi-periodic motions may be induced in the pipe system with either TPBs or TSP constraints, which have not been observed in the 2-D version of the same system. The results obtained in this work highlight the importance of consideration of the non-planar oscillations in cantilevered pipes subjected to loose constraints.  相似文献   

14.
A principle of virtual work is proposed for thermo-elastic bodies. From it are derived the equations of motion, the Cauchy stress principle and the Gibbs relations. The principle is also used to analyse the response of internally constrained bodies.  相似文献   

15.
Modified three-dimensional formulations of bending problems of homogeneous elastic plates and beams are considered. Modification of the known three-dimensional formulations reduces to using additional constraints imposed on displacement functions. An advantage of the formulations proposed is that complex fixing conditions of plates and beams can be taken into account.  相似文献   

16.
Theories of laminated plates have been proposed that, although they lead to different plate equations, are based as ours on the assumptions that the three-dimensional deformation of each layer is of Reissner–Mindlin type and that displacement and traction vectors are continuous across layer interfaces. The distinctive feature of our present theory is that reactive stresses are associated with the internal constraints implicit in the assumed kinematics, and exploited to obtain an improved evaluation of the stress field in the three-dimensional layered body for which we propose a two-dimensional model. Application to equilibrium problems for rectangular and circular plates gives results that are in good agreement with the exact three-dimensional solutions of Levinson type we derived in a companion paper.  相似文献   

17.
Xing  Xueyan  Liu  Jinkun  Liu  Zhijie 《Nonlinear dynamics》2019,95(2):1395-1413

In this paper, a three-dimensional dynamic model is developed for a flexible string system with variable length as well as spatiotemporally varying parameters. The dynamic system model is described by coupled partial differential equations and ordinary differential equations. On the basis of the established model, a boundary control method is proposed via backstepping technology and Nussbaum functions to eliminate the vibration of the three-dimensional string with input constraints and disturbances. Deformations of the three-dimensional string system can be verified to converge to small neighborhoods of zero under the proposed control. Input constraints can also be guaranteed by applying smooth hyperbolic tangent function. Simulation results present that the vibration suppression of the flexible string can be achieved and input constraints can be ensured with the proposed control scheme.

  相似文献   

18.
In the linear theory of elasticity, Saint-Venant's principle is used to justify the neglect of edge effects when determining stresses in a body. For isotropic materials, the validity of this is well established. However for anisotropic and composite materials, experimental results have shown that edge effects may persist much farther into the material than for isotropic materials and as a result cannot be neglected. This paper further examines the effects of material anisotropy on the exponential decay rate for stresses in a semi-infinite elastic strip. A linearly elastic semi-infinite strip in a state of plane stress/strain subject to a self-equilibrated end load is considered first for a specially orthotropic material and then for the general anisotropic material. The problem is governed by a fourth-order elliptic partial differential equation with constant coefficients. In the former case, just a single dimensionless material parameter appears, while in the latter, only three dimensionless parameters are required. Energy methods are used to establish lower bounds on the actual stress decay rate. Both analytic and numerical estimates are obtained in terms of the elastic constants of the material and results are shown for several contemporary engineering materials. When compared with the exact stress decay rate computed numerically from the eigenvalues of a fourth-order ordinary differential equation, the results in some cases show a high degree of accuracy. In particular, for strongly orthotropic materials, an asymptotic estimate provides extremely accurate estimates for the decay rate. Results of the type obtained here have several important practical applications. For example, they provide physical insight into the mechanical testing of anisotropic and laminated composite structures (including the off-axis tension test), are useful in assessing the influence of fasteners, joints, etc. on the behavior of composite structures and allow for tailoring a material with specific properties to ensure that local stresses attenuate at a desired rate.  相似文献   

19.
A mathematical model of a steady viscous incompressible fluid flow in a channel with exit conditions different from the Dirichlet conditions is considered. A variational inequality is derived for the formulated subdifferential boundary-value problem, and the structure of the set of its solutions is studied. For two-ption on the low Reynolds number is proved. In the three-dimensional case, a class of constraints on the tangential component of velocity at the exit, which guarantees solvability of the variational inequality, is found.  相似文献   

20.
Cavitation for incompressible anisotropic nonlinearly elastic spheres   总被引:4,自引:0,他引:4  
In this paper, the effect ofmaterial anisotropy on void nucleation and growth inincompressible nonlinearly elastic solids is examined. A bifurcation problem is considered for a solid sphere composed of an incompressible homogeneous nonlinearly elastic material which is transversely isotropic about the radial direction. Under a uniform radial tensile dead-load, a branch of radially symmetric configurations involving a traction-free internal cavity bifurcates from the undeformed configuration at sufficiently large loads. Closed form analytic solutions are obtained for a specific material model, which may be viewed as a generalization of the classic neo-Hookean model to anisotropic materials. In contrast to the situation for a neo-Hookean sphere, bifurcation here may occur locally either to the right (supercritical) or to the left (subcritical), depending on the degree of anisotropy. In the latter case, the cavity has finite radius on first appearance. Such a discontinuous change in stable equilibrium configurations is reminiscent of the snap-through buckling phenomenon of structural mechanics. Such dramatic cavitational instabilities were previously encountered by Antman and Negrón-Marrero [3] for anisotropiccompressible solids and by Horgan and Pence [17] forcomposite incompressible spheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号