首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 IntroductionIn geophysical logging, one must study the soUnd field in cased borehole to properly assessthe case bonding conditions. Geophysicists have studied the sound fields in cased boreholesquite thoroughly and drawn many useful c.nclusionsll--6]. Bat they usually assume that thebonding conditions of the illterfaces between the case and cemellt, or between the cemellt andformation, are either well or poorly bonded. In the latter case, the bonding condition is modeledby a fluid annulus. …  相似文献   

2.
Dezső Boda 《Molecular physics》2013,111(20):2367-2370
Generally, the parameters in the interaction potential between like molecules in a mixture can be determined in a relatively straightforward manner from the properties of the pure components. However, the determination of the parameters in the interaction potential between the unlike pairs in the mixtures is more difficult. As a result, these parameters are usually estimated from averages of the like parameters. The most common recipes are the Lorentz–Berthelot mixing rules, where the energy and molecular size parameters are presumed to be geometric and arithmetic averages, respectively. There have been some studies of the consequences of deviations from the energy rule but almost no studies of the consequences of deviations from the size rule. Here, we study the effects of deviations from both rules on the radial distribution functions of a simple mixture. We find from simulations that, for this mixture, the effect of deviations from the energy rule on the radial distribution function are rather small but that the effect of deviations from the size rule can be significant and are interesting.  相似文献   

3.
The proposal of pilgrim dark energy is based on the idea that phantom dark energy possesses enough resistive force to preclude black hole formation. We work on this proposal by choosing an interacting framework with cold dark matter and three cutoffs such as Hubble as well as event horizon and conformal age of the universe. We present a graphical analysis and focus our study on the pilgrim dark energy as well as interacting parameters. It is found that these parameters play an effective role on the equation of state parameter for exploring the phantom region of the universe. We also make the analysis of ωω′ and point out freezing region in the ωω′ plane. Finally, it turns out that the ΛCDM is achieved in the statefinders plane for all models.  相似文献   

4.
We experimentally demonstrate that optical tweezers can be used to accelerate the self-assembly of colloidal particles at a water–air interface in this Letter. The thermal flow induced by optical tweezers dominates the growth acceleration at the interface. Furthermore, optical tweezers are used to create a local growth peak at the growing front, which is used to study the preferential incorporation positions of incoming particles.The results show that the particles surfed with a strong Marangoni flow tend to fill the gap and smoothen the steep peaks. When the peak is smooth, the incoming particles incorporate the crystal homogeneously at the growing front.  相似文献   

5.
Molecular dynamics simulations were performed at constant temperature to obtain the surface tension of hydrocarbon chains at the liquid–vapour interface. The Ewald sum was used to calculate the dispersion forces of the Lennard–Jones potential to take into account the full interaction. The NERD and TraPPE_UA flexible force field models were used to simulate molecules from ethane to hexadecane along the coexistence curve. The simulation results for the TraPPE_UA model are in good agreement with experimental data, whereas the NERD model predicts slightly higher values.  相似文献   

6.
The misfit strain within the core of a two-phase free-standing core–shell nanowire resulting in the generation of an edge misfit dislocation or an edge misfit dislocation dipole at the core–shell interface is considered theoretically within both the classical and surface/interface elasticity approaches. The critical conditions for the misfit dislocation generation are studied and discussed in detail with special attention to the non-classical surface/interface effect. It is shown that this effect is significant for fine cores of radius smaller than roughly 20 interatomic distances. The positive and negative surface/interface Lamé constants mostly make the generation of the misfit dislocation easier and harder, respectively. Moreover, the positive (negative) residual surface/interface tensions mostly make the generation of the misfit dislocation harder (easier). The formation of individual misfit dislocation is energetically more preferential in finer two-phase nanowires, while the formation of misfit dislocation dipole is more expectable in the coarser ones.  相似文献   

7.
张雪花  李刚  吴志华  张晓东  胡钧 《中国物理》2005,14(9):1774-1778
The great implication of nanobubbles at a solid/water interface has drawn wide attention of the scientific community and industries. However, the fundamental properties of nanobubbles remain unknown as yet. In this paper, the temperature effects on the morphology of nanobubbles at the mica/water interface are explored through the combination of AFM direct image with the temperature control. The results demonstrate that the apparent height of nanobubbles in AFM images is kept almost constant with the increase of temperature, whilst the lateral size of nanobubbles changes significantly. As the temperature increases from 28℃ to 42℃, the lateral size of nanobubbles increases, reaching a maximum at about 37℃, and then decreases at a higher temperature. The possible explanation for the size change of nanobubbles with temperature is suggested.  相似文献   

8.
9.
《Comptes Rendus Physique》2013,14(5):402-411
Millimetre waves correspond to the range of frequencies located between 30 and 300 GHz. Many applications exist and are emerging in this band, including wireless telecommunications, imaging and monitoring systems. In addition, some of these frequencies are used in therapy in Eastern Europe, suggesting that interactions with the human body are possible. This review aims to summarise current knowledge on interactions between millimetre waves and living matter. Several representative examples from the scientific literature are presented. Then, possible mechanisms of interactions between millimetre waves and biological systems are discussed.  相似文献   

10.
The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane–water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351–6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid–liquid interfaces.  相似文献   

11.
The silicon NPN rf power transistors were irradiated with different linear energy transfer (LET) ions such as 50?MeV Li3+, 80?MeV C6+ and 150?MeV Ag12+ ions in the dose range of 1–100?Mrad. The SRIM simulation was used to understand the energy loss and range of these ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔIB), DC current gain (hFE), displacement damage factor (K) and output characteristics were systematically studied before and after irradiation. The ion irradiation results were compared with 60Co-gamma irradiation result in the same dose range. A considerable increase in base current (IB) and a decrease in hFE and ICSat were observed after irradiation. The degradation in the electrical parameters was comparably very high for Ag12+ ion-irradiated transistor when compared to other ion-irradiated transistors, whereas the degradation in the electrical parameters for Li3+ and C6+ ion-irradiated transistors was comparable with gamma-irradiated transistor. The isochronal annealing study was conducted on the 100?Mrad irradiated transistors up to 500°C to analyze the recovery in different electrical parameters. The hFE and other electrical parameters of irradiated transistors were almost recovered after 500°C for 50?MeV Li3+, 80?MeV C6+ ion and 60Co-gamma-irradiated transistors, whereas for 150?MeV Ag12+ ion-irradiated transistor, the recovery in electrical characteristics is not complete.  相似文献   

12.
TM-polarized optical surface polaritons in a nonlinear semiconductor–nanocomposite guiding structure have been considered. The nanocomposite consists of alternating layers of bismuth-containing garnet ferrite (BIG, Lu3 – xBixFe5 – yGayO12) and gallium–gadolinium garnet (Gd3Ga5O12), and the semiconductor (n-InSb) has a cubic nonlinearity and is characterized by two components of the nonlinear susceptibility tensor. With allowance for the anisotropy of the optical properties of the nanocomposite, caused by the magnetization of the BIG layers, the dispersion relation has been obtained and analyzed and its solutions are shown to split into two pairs of high- and low-frequency branches. The influence of the electric field at the interface on the wave characteristics and the existence domains of nonlinear surface TM polaritons has been studied. By solving the inverse problem of finding the profile of the longitudinal electric component of the surface polariton, it has been found that the nonlinearity gives rise to soliton-like wave fields.  相似文献   

13.
The Goos–H?nchen (GH) shift of a p-polarized light beam reflected from an interface of a composite material of particulate metals in a dielectric host is studied theoretically using effective medium approaches, with focus on the effects due to the clustering of the metal particles. With application of a fractal-clustering model, it is shown that the composite can have optically metallic behavior even for relatively low volume fraction of metal when clustering takes place, with appreciable negative GH shifts to take place for light of long wavelengths close to grazing incident angles. Furthermore, we confirm that large reflectance is always accompanied with this metal behavior, thus rendering these shifts easily observable.  相似文献   

14.
When using laser interferometer to detect surface acoustic wave at fluid–solid interface, there are two factors which will cause the optical path length variation of the probe laser beam: interface deformation, and refractive index changes in fluid induced by acoustic leakage. Influence of acoustic leakage on laser interferometric detection for surface acoustic wave is researched here. A metal plate immersed in an infinite fluid is used as a physical model. Interface deformation due to laser-induced acoustic wave and pressure in fluid due to acoustic leakage are computed for select cases by finite element method. The optical path length variation caused by the two factors are calculated respectively and compared. The results show that the influence of acoustic leakage increases with the increasing acoustic impedance matching of fluid and solid, the peak-to-peak of influence degree increases linearly with the increasing acoustic impedance of fluid, and that decreasing the distance between the interferometer and interface can effectively reduce the influence of acoustic leakage.  相似文献   

15.
16.
Channel waveguides with channel opening widths (COWs) from 4.5 to 7.5 μm with increment of 0.5 μm have been fabricated by two-step ion exchange on the same erbium-ytterbium uniformly doped phosphate glass substrate of 4.3-cm length. Experimental results indicate that the gain for 1534-nm small signal light pumped at saturation is maximized and shows a 3.6-dB enhancement for these erbium-ytterbium doped waveguide amplifiers (EYDWAs). The intensity profile overlap between signal and multimode-pump light in waveguide leads to the improvement in the gain of EYDWA. This can be used to explain the experimental results and shows the general dependence of the gain characteristics on the modal behavior of EYDWA. The presence of higher order modes of pump light and the optimization of this intensity profile overlap are significant to improve the gain properties of EYDWA.  相似文献   

17.
Considering the inhomogeneous or heterogeneous background, we have demonstrated that if the background and the half-immersed object are both non-absorbing, the transferred photon momentum to the pulled object can be considered as the one of Minkowski exactly at the interface. In contrast, the presence of loss inside matter, either in the half-immersed object or in the background, causes optical pushing of the object. Our analysis suggests that for half-immersed plasmonic or lossy dielectric, the transferred momentum of photon can mathematically be modeled as the type of Minkowski and also of Abraham. However, according to a final critical analysis, the idea of Abraham momentum transfer has been rejected. Hence,an obvious question arises: whence the Abraham momentum? It is demonstrated that though the transferred momentum to a half-immersed Mie object(lossy or lossless) can better be considered as the Minkowski momentum, Lorentz force analysis suggests that the momentum of a photon traveling through the continuous background, however, can be modeled as the type of Abraham. Finally, as an interesting sidewalk, a machine learning based system has been developed to predict the time-averaged force within a very short time avoiding time-consuming full wave simulation.  相似文献   

18.
S.R. Wilson 《哲学杂志》2015,95(2):224-241
Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0 alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.  相似文献   

19.
Vibration energy transmission at corner interface of two infinite plates rigidly jointed at arbitrary angles was studied by wave approach so as to investigate the effect of blocking mass used for reducing plane bending wave transmission.Two local coordinate sys- tems were introduced and six new non-dimensional coefficients implying corresponding ratio governing characteristic impedances of plates or blocking mass were introduced to simplify for- mulations of transmission and reflection coefficients.Five samples were tested in experiment. Discussions were carried out based on the comparison between prediction and experiment in terms of insertion loss.It is concluded that blocking mass at corner interface acts like a"low- pass filter",effective for vibration attenuation above certain frequency.The value of TL and IL in"attenuation band"depends mainly on mass per unit length and band width of"attenuation band"on mass moment of inertia per unit length of the blocking mass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号