首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combustion under stratified conditions is common in many systems. However, relatively little is known about the structure and dynamics of turbulent stratified flames. Two-dimensional imaging diagnostics are applied to premixed and stratified V-flames at a mean equivalence ratio of 0.77, and low turbulent intensity, within the corrugated flame range. The present results show that stratification affects the mean turbulent flame speed, structure and geometric properties. Stratification increases the flame surface density above the premixed flame levels in all cases, with a maximum reached at intermediate levels of stratification. The flame surface density (FSD) of stratified flames is higher than that of premixed flames at the same mean equivalence ratio. Under the present conditions, the FSD peaks at a stratification ratio around 3.0. The FSD curves for stratified flames are further skewed towards the product side. The distribution of flame curvature in stratified flames is broader and more symmetric relative to premixed flames, indicating an additional mechanism of curvature generation, which is not necessarily due to cusping. These experiments indicate that flame stratification affects the intrinsic behaviour of turbulent flames and suggest that models may need to be revised in the light of the current evidence.  相似文献   

2.
This paper presents an assessment of Large Eddy Simulations (LES) in calculating the structure of turbulent premixed flames propagating past solid obstacles. One objective of the present study is to evaluate the LES simulations and identify the drawbacks in accounting the chemical reaction rate. Another objective is to analyse the flame structure and to calculate flame speed, generated overpressure at different time intervals following ignition of a stoichiometric propane/air mixture. The combustion chamber has built-in repeated solid obstructions to enhance the turbulence level and hence increase the flame propagating speed. Various numerical tests have also been carried out to determine the regimes of combustion at different stages of the flame propagation. These have been identified from the calculated results for the flow and flame characteristic parameters. It is found that the flame lies within the ‘thin reaction zone’ regime which supports the use of the laminar flamelet approach for modelling turbulent premixed flames. A submodel to calculate the model coefficient in the algebraic flame surface density model is implemented and examined. It is found that the LES predictions are slightly improved owing to the calculation of model coefficient by using submodel. Results are presented and discussed in this paper are for the flame structure, position, speed, generated pressure and the regimes of combustion during all stages of flame propagation from ignition to venting. The calculated results are validated against available experimental data.  相似文献   

3.
Recent numerical and experimental studies have unveiled a potentially marked difference between the laminar as well as turbulent propagation of premixed flames exhibiting Darrieus–Landau (DL) (or hydrodynamic) instabilities from flames for which instabilities are inhibited. In this study we utilize two-dimensional numerical simulations of slot burner flames as well as experimental Propane–Air Bunsen flames to analyse differences in turbulent propagation, strain rate and induced flow patterns of hydrodynamically stable and unstable flames. We also investigate the effects of hydrodynamic instability on quantities which are directly related to reaction rate closure models, such as flame surface density and stretch factor. A clear enhancement of turbulent flame speed can be observed for unstable flames, generally mitigated at higher turbulence intensity, which is attributed to a flame area increase induced by the characteristic cusp-like DL-induced corrugation, absent in stable flames, which occurs concurrently and in synergy with turbulent wrinkling. Unstable flames also exhibit, both numerically and experimentally, a different correlation between strain rate and flame curvature and are observed to give rise to a channeling of the induced flow in the fresh mixture. Conditionally averaged flame surface density is also observed to attain smaller values in unstable flames, as a result of the thicker turbulent flame brush, indicating that closure models should incorporate instability-related parameters in addition to turbulence-related parameters.  相似文献   

4.

The stabilization of turbulent premixed flames in strongly swirled flows undergoing vortex breakdown is studied in the case of the ALSTOM En-Vironmental (EV) double cone burner using a simple one-dimensional boundary layer type model and computational fluid dynamics, mainly at the level of large-eddy simulation. The analysis shows that, due to flame curvature effects, the flame speed on the combustor axis is 2 D t/R F lower than the turbulent burning rate, where D t is a characteristic turbulent diffusion coefficient and R F the flame radius of curvature. Flame propagation with negative speed observed in the experiments, i.e. the flame completely embedded in the central recirculation zone on the symmetry axis, is explained with the one-dimensional model as caused by the factor 2 D t/R F being larger than the characteristic turbulent burning rate. A peculiar sudden displacement of the flame anchoring location deep into the burner, which takes place experimentally at a critical value of the equivalence ratio, cannot however be explained with the present one-dimensional approach due to the modelling assumptions. The mathematical analysis is supported in this case with large-eddy simulation which can accurately reproduce the flame behaviour across the full operating range. It is finally shown that steady RANS methods cannot cope with the problem due to their inability to correctly predict the velocity flowfield in this burner.  相似文献   

5.
As a sensitive marker of changes in flame structure, the number densities of excited-state CH (denoted CH*), and excited-state OH (denoted OH*) are imaged in coflow laminar diffusion flames. Measurements are made both in normal gravity and on the NASA KC-135 reduced-gravity aircraft. The spatial distribution of these radicals provides information about flame structure and lift-off heights that can be directly compared with computational predictions. Measurements and computations are compared over a range of buoyancy and fuel dilution levels. Results indicate that the lift-off heights and flame shapes predicted by the computations are in excellent agreement with measurement for both normal gravity (1g) and reduced gravity flames at low dilution levels. As the fuel mixture is increasingly diluted, however, the 1g lift-off heights become underpredicted. This trend continues until the computations predict stable flames at highly dilute fuel mixtures beyond the 1g experimental blow-off limit. To better understand this behavior, an analysis was performed, which indicates that the lift-off height is sensitive to the laminar flame speed of the corresponding premixed mixture at the flame edge. By varying the rates of two key “flame speed” controlling reactions, we were able to modify the predicted lift-off heights so as to be in closer agreement with the experiments. The results indicate that reaction sets that work well in low dilution systems may need to be modified to accommodate high dilution flames.  相似文献   

6.
Level-set G-equation and stationary flamelet chemistry are used in large eddy simulation of a propane/air premixed turbulent flame stabilized by a bluff body. The aim was to study the interaction between the flame front and turbulent eddies, and in particular to examine the effect of sub-grid scale (SGS) eddies on the wrinkling of the flame surface. The results indicated that the two types of turbulence eddies—the resolved large scale eddies and the unresolved SGS eddies—have different effects on the flame. The fluctuation of the flame surface, which is responsible for the broadening of the time averaged mean flame brush by turbulence, depends on the large resolved turbulence eddies. Time averaged mean flow velocity, temperature, and major species concentrations mainly depend on the large scale resolved eddies. The unresolved SGS eddies contribute to the wrinkling at the SGS level and play an important role in the enhancement of the propagation speed of the resolved flame front. In addition, the spatially filtered intermediate species, such as radicals, and the spatially filtered reaction rates strongly depend on the small SGS eddies. The asymptotic behavior of flame wrinkling by the SGS eddies, with respect to the decrease in filter size and grid size, is investigated further using a simplified level-set equation in a model shear flow. It is shown that to minimize the influence of the SGS eddies, fine grid and filter size may have to be used.  相似文献   

7.
Resistance to extinction by stretch is a key property of any flame, and recent work has shown that this property controls the overall structure of several important types of turbulent flames. Multiple definitions of the critical strain rate at extinction (ESR) have been presented in the literature. However, even if the same definition is used, different experiments report different extinction strain rates for flames burning the same fuel-air mixture at very similar temperatures using similarly constructed opposed-flow instruments. Here we show that at extinction, all these flames are essentially identical, so one would expect that each would be assigned the same value of a parameter representing its intrinsic resistance-to-stretch-induced-extinction, regardless of the specifics of the experimental apparatus. A similar situation arises in laminar flame speed measurements since different apparatuses could result in different strain rate distributions. In that instance, the community has agreed to report the unstretched laminar flame speed, and methods have been developed to translate the experimental (stretched) flame speed into a universal unstretched laminar flame speed. We propose an analogous method for translating experimental measurements for stretch-induced extinction into an unambiguous and apparatus-independent quantity (ESR) by extrapolating to infinite opposing burner separation distance. The uniqueness of the flame at extinction is shown numerically and supported experimentally for twin premixed, single premixed, and diffusion flames at Lewis numbers greater than and less than one. A method for deriving ESR from finite-boundary experimental studies is proposed and demonstrated for methane and propane experimental diffusion and premixed single flame data. The two values agree within the range of ESR differences typically observed between experimental measurements and simulation results for the traditional ESR definition.  相似文献   

8.
The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.  相似文献   

9.
We investigate the role played by hydrodynamic instability in the wrinkled flamelet regime of turbulent combustion, where the intensity of turbulence is small compared to the laminar flame speed and the scale large compared to the flame thickness. To this end the Michelson–Sivashinsky (MS) equation for flame front propagation in one and two spatial dimensions is studied in the presence of uncorrelated and correlated noise representing a turbulent flow field. The combined effect of turbulence intensity, integral scale, and an instability parameter related to the Markstein length are examined and turbulent propagation speed monitored for both stable planar flames and corrugated flames for which the planar conformation is unstable. For planar flames a particularly simple scaling law emerges, involving quadratic dependence on intensity and a linear dependence on the degree of instability. For corrugated flames we find the dependence on intensity to be substantially weaker than quadratic, revealing that corrugated flames are more resilient to turbulence than planar flames. The existence of a threshold turbulence intensity is also observed, below which the corrugated flame in the presence of turbulence behaves like a laminar flame. We also analyze the conformation of the flame surface in the presence of turbulence, revealing primary, large-scale wrinkles of a size comparable to the main corrugation. When the integral scale is much smaller than the characteristic corrugation length we observe, in addition to primary wrinkles, secondary small-scale wrinkles contaminating the surface. The flame then acquires a multi-scale, self-similar conformation, with a fractal dimension, for one-dimensional flames, plateauing at 1.23 for large intensities. The existence of an intermediate integral scale is also found at which the turbulent speed is maximized. When two-dimensional flames are subject to turbulence, the primary wrinkling patterns give rise to polyhedral-cellular structures which bear a very close resemblance to those observed in experiments on hydrodynamically unstable expanding spherical flames.  相似文献   

10.
小火焰模型在贫燃预混火焰中的研究   总被引:4,自引:0,他引:4  
由层流小火焰库引入详细化学反应机理,通过简化的PDF方法计算组分浓度、平均温度和密度等变量,以钝体火焰稳定燃烧室和某燃气轮机上的燃烧室为例,模拟甲烷/空气贫燃条件下预混燃烧的平均火焰位置和火焰厚度,计算结果与实验结果吻合良好,这表明此方法能够较好计算出平均湍流火焰的主要特征。  相似文献   

11.
This study has been mainly motivated to assess computationally and theoretically the conditional moment closure (CMC) model and the transient flamelet model for the simulation of turbulent nonpremixed flames. These two turbulent combustion models are implemented into the unstructured grid finite volume method that efficiently handles physically and geometrically complex turbulent reacting flows. Moreover, the parallel algorithm has been implemented to improve computational efficiency as well as to reduce the memory load of the CMC procedure. Example cases include two turbulent CO/H2/N2 jet flames having different flow timescales and the turbulent nonpremixed H2/CO flame stabilized on an axisymmetric bluff-body burner. The Lagrangian flamelet model and the simplified CMC formulation are applied to the strongly parabolic jet flame calculation. On the other hand, the Eulerian particle flamelet model and full conservative CMC formulation are employed for the bluff-body flame with flow recirculation. Based on the numerical results, a detailed discussion is given for the comparative performances of the two combustion models in terms of the flame structure and NO x formation characteristics.  相似文献   

12.
In this paper we present the first measurement of turbulent burning velocities of a highly turbulent compressible standing flame induced by shock-driven turbulence in a Turbulent Shock Tube. High-speed schlieren, chemiluminescence, PIV, and dynamic pressure measurements are made to quantify flame–turbulence interaction for high levels of turbulence at elevated temperatures and pressure. Distributions of turbulent velocities, vorticity and turbulent strain are provided for regions ahead and behind the standing flame. The turbulent flame speed is directly measured for the high-Mach standing turbulent flame. From measurements of the flame turbulent speed and turbulent Mach number, transition into a non-linear compressibility regime at turbulent Mach numbers above 0.4 is confirmed, and a possible mechanism for flame generated turbulence and deflagration-to-detonation transition is established.  相似文献   

13.
In this study we numerically investigate large scale premixed flames in weakly turbulent flow fields. A large scale flame is classified as such based on a reference hydrodynamic lengthscale being larger than a neutral (cutoff) lengthscale for which the hydrodynamic or Darrieus–Landau (DL) instability is balanced by stabilizing diffusive effects. As a result, DL instability can develop for large scale flames and is inhibited otherwise. Direct numerical simulations of both large scale and small scale three-dimensional, weakly turbulent flames are performed at constant Karlovitz and turbulent Reynolds number, using two paradigmatic configurations, namely a statistically planar flame and a slot Bunsen flame. As expected from linear stability analysis, DL instability induces its characteristic cusp-like corrugation only on large scale flames. We therefore observe significant morphological and topological differences as well as DL-enhanced turbulent flame speeds in large scale flames. Furthermore, we investigate issues related to reaction rate modeling in the context of flame surface density closure. Thicker flame brushes are observed for large scale flames resulting in smaller flame surface densities and overall larger wrinkling factors.  相似文献   

14.
Direct numerical simulation is a very powerful tool to evaluate the validity of new models and theories for turbulent combustion. In this paper, direct numerical simulations of spherically expanding premixed turbulent flames in the corrugated flamelet regime are performed. The flamelet-generated manifold method is used to deal with detailed reaction kinetics. The numerical method is validated for both laminar and turbulent expanding flames. The computational results are analyzed by using an extended flame stretch theory. It is investigated whether this theory is able to describe the influence of flame stretch and curvature on the local burning velocity of the flame. If the full profiles of flame stretch and curvature through the flame front are included in the theory, the local mass burning rate is predicted accurately. The influence of several approximations, which are used in other existing theories, is studied. When flame stretch is assumed to be constant through the flame front or when curvature of the flame front is neglected, the theory fails to predict the local mass burning rate.  相似文献   

15.

This paper presents a numerical study of auto-ignition in simple jets of a hydrogen–nitrogen mixture issuing into a vitiated co-flowing stream. The stabilization region of these flames is complex and, depending on the flow conditions, may undergo a transition from auto-ignition to premixed flame propagation. The objective of this paper is to develop numerical indicators for identifying such behavior, first in well-known simple test cases and then in the lifted turbulent flames. The calculations employ a composition probability density function (PDF) approach coupled to the commercial CFD code, FLUENT. The in-situ-adaptive tabulation (ISAT) method is used to implement detailed chemical kinetics. A simple k–ε turbulence model is used for turbulence along with a low Reynolds number model close to the solid walls of the fuel pipe.

The first indicator is based on an analysis of the species transport with respect to the budget of convection, diffusion and chemical reaction terms. This is a powerful tool for investigating aspects of turbulent combustion that would otherwise be prohibitive or impossible to examine experimentally. Reaction balanced by convection with minimal axial diffusion is taken as an indicator of auto-ignition while a diffusive–reactive balance, preceded by a convective–diffusive balanced pre-heat zone, is representative of a premixed flame. The second indicator is the relative location of the onset of creation of certain radical species such as HO2 ahead of the flame zone. The buildup of HO2 prior to the creation of H, O and OH is taken as another indicator of autoignition.

The paper first confirms the relevance of these indicators with respect to two simple test cases representing clear auto-ignition and premixed flame propagation. Three turbulent lifted flames are then investigated and the presence of auto-ignition is identified. These numerical tools are essential in providing valuable insights into the stabilization behaviour of these flames, and the demarcation between processes of auto-ignition and premixed flame propagation.  相似文献   

16.
Large eddy simulation (LES) is conducted of the Sandia Flame D [Proc. Combust. Inst. 27 (1998) 1087, Sandia National Laboratories (2004)], which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology [J. Fluid Mech. 401 (1999) 85]. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities [Turbulent Flows (2000)]. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme. This is the first LES of a realistic turbulent flame using the transported PDF method as the SGS closure. The results via this method capture important features of the flame as observed experimentally.  相似文献   

17.
Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier–Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various physical mechanisms. This has implications in selecting the operating conditions for such flames and for devising proper control strategies for the avoidance of thermoacoustic instability.  相似文献   

18.
The peak flame surface density within the turbulent flame brush is central to turbulent premixed combustion models in the flamelet regime. This work investigates the evolution of the peak surface density in spherically expanding turbulent premixed flames with the help of direct numerical simulations at various values of the Reynolds and Karlovitz number. The flames propagate in decaying isotropic turbulence inside a closed vessel. The effects of turbulent transport, transport due to mean velocity gradient, and flame stretch on the peak surface density are identified and characterized with an analysis based on the transport equation for the flame surface density function. The three mechanisms are governed by distinct flow time scales; turbulent transport by the eddy turnover time, mean transport by a time scale related to the pressure rise in the closed chamber, and flame stretch by the Kolmogorov time scale. Appropriate scaling of the terms is proposed and shown to collapse the data despite variations in the dimensionless groups. Overall, the transport terms lead to a reduction in the peak value of the surface density, while flame stretch has the opposite effect. In the present configuration, a small imbalance between the two leads to an exponential decay of the peak surface density in time. The dimensionless decay rate is found to be consistent with the evolution of the wrinkling scale as defined in the Bray-Moss-Libby model.  相似文献   

19.
We have developed a general theory of non-adiabatic premixed flames that is valid for flames of arbitrary shape that fully accounts for the hydrodynamic and diffusive-thermal processes, and incorporates the effects of volumetric heat losses. The model is used to describe aspects of experimentally observed phenomena of self-extinguishing (SEFs) and self-wrinkling flames (SWFs), in which radiative heat losses play an important role. SEFs are spherical flames that propagate considerable distances in sub-limit conditions before suddenly extinguishing. Our results capture many aspects of this phenomenon including an explicit determination of flame size and propagation speed at quenching. SWFs are hydrodynamically unstable flames in which cells spontaneously appear on the flame surface once the flame reaches a critical size. Our results yield expressions of the critical flame size at the onset of wrinkling and expected cell size beyond the stability threshold. The various possible burning regimes are mapped out in parameter space.  相似文献   

20.
The presence of swirl in combustion systems produces a marked change in their boundary layer flashback behaviour. Two aspects of swirling flow are investigated in this study: the effect of the swirl-generated wall-normal pressure gradient, and the effect of misalignment between the mean flow direction and the direction of flame propagation. The analysis employs Direct Numerical Simulation (DNS) of fuel-lean premixed hydrogen-air flames in turbulent planar channel flow with friction Reynolds number of 180. The effect of swirl on the flashback process is investigated by imposing a wall-normal pressure gradient profile. Analysis of the DNS data shows how the resulting differences in flow field and flame topology contribute to the differences in the overall flashback speed. Misalignment of the flow and propagation directions leads to asymmetry in the flame shape statistics as streaks of high velocity fluid in the boundary layer cleave into the flame front at an angle, yielding an increase in flame surface density away from the wall. Swirl has a stabilising effect on the turbulent flame front during flashback along the centre-body of a swirling annular flow due to the density stratification across the flame front, and produces a reduction in turbulent consumption speed. However the swirl also sets up a hydrostatic pressure difference that drives the flame forward, and the net effect is that the flashback speed is increased. The dominance of hydrostatic effects motivates development of relatively simple modelling for the effect of swirl on flashback speed. A model accounting for the inviscid momentum balance and for confinement effects is presented which adequately describes the effect of swirl on flashback speed observed in previous experimental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号