首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of piloted premixed jet flames with strong finite-rate chemistry effects is studied using the joint velocity-turbulence frequency-composition PDF method. The numerical accuracy of the calculations is demonstrated, and the calculations are compared to experimental data. It is found that all calculations show good agreement with the measurements of mean and rms mixture fraction fields, while the reaction progress is overpredicted to varying degrees depending on the jet velocity. In the calculations of the flame with the lowest jet velocity, the species and temperature show reasonable agreement with the measurements, with the exception of a small region near the centerline where products and temperature are overpredicted and fuel and oxidizer are underpredicted. In the calculations of the flame with the highest jet velocity, however, the overprediction of products and temperature and underprediction of fuel and oxidizer is far more severe. An extensive set of sensitivity studies on inlet boundary conditions, turbulence model constants, mixing models and constants, radiation treatment, and chemical mechanisms is conducted to show that any parameter variation offers little improvement from the base case. To shed light on these discrepancies, diagnostic calculations are performed in which the chemical reactions are artificially slowed. These diagnostic calculations serve to validate the experimental data and to quantify the amount by which the base case calculations overpredict reaction progress. Improved calculations of this flame are achieved only through artificially slowing down the chemical reaction by a factor of about 10. The mixing model behavior in this combustion regime is identified as a likely cause for the observed discrepancy in reaction progress.  相似文献   

2.
A multidimensional chemistry coordinate mapping (CCM) approach is presented for efficient integration of chemical kinetics in numerical simulations of turbulent reactive flows. In CCM the flow transport is integrated in the computational cells in physical space, whereas the integration chemical reactions are carried out in a phase space made up of a few principal variables. Each cell in the phase space corresponds to several computational cells in the physical space, resulting in a speedup of the numerical integration. In reactive flows with small hydrocarbon fuels two principal variables have been shown to be satisfactory to construct the phase space. The two principal variables are the temperature (T) and the specific element mass ratio of the H atom (J H). A third principal variable, σ=?J H·?J H, which is related to the dissipation rate of J H, is required to construct the phase space for combustion processes with an initially non-premixed mixture. For complex higher hydrocarbon fuels, e.g. n-heptane, care has to be taken in selecting the phase space in order to model the low-temperature chemistry and ignition process. In this article, a multidimensional CCM algorithm is described for a systematic selection of the principal variables. The method is evaluated by simulating a laminar partially remixed pre-vaporised n-heptane jet ignition process. The CCM approach is then extended to simulate n-heptane spray combustion by coupling the CCM and Reynolds averaged Navier–Stokes (RANS) code. It is shown that the computational time for the integration of chemical reactions can be reduced to only 3–7%, while the result from the CCM method is identical to that of direct integration of the chemistry in the computational cells.  相似文献   

3.
This paper utilises large eddy simulation (LES) to study swirling reacting flows by comparison with experimental observations. The purpose is to provide further insights in engineering designs, as well as to improve modelling. A reduced-scale swirl burner has been developed for the experiments. Comparison of particle image velocimetry (PIV) measurements with LES results using finite rate chemistry shows that LES captures all the salient features of an unconfined flame including velocity and temperature distributions. However, when the flame is confined within a cylindrical combustor, the simulated flame shape is initially not consistent with experimental observation. Investigations show that the discrepancy is caused by the often practised assumption of adiabatic wall temperature. With the use of an assumed wall temperature distribution guided by laboratory observation, results of LES are consistent with experiments. Although the latter LES approach requires more computational resources, the improvement is found to be justified.  相似文献   

4.
The effects of combustion and SubGrid Scale (SGS) modelling on the overall flame characteristics of a turbulent premixed flame are investigated. This is achieved in terms of mean flow statistics, variances and flame surfaces. In particular, the chemical flame structure is analysed and compared. The Artificially Thickened Flame (ATF) approach coupled with the Flamelet Generated Manifolds (FGMs) and Filtered TAbulated Chemistry for LES (F-TACLES) approaches are used for this investigation. A Germano like procedure for dynamical calculation of SGS wrinkling is used which ensures the conservation of the total flame surface for both models. It turns out that using the dynamic SGS wrinkling model improves the results. Although the results of both combustion models in terms of statistics, mean and variances show very good agreement, the resolved flame surfaces hide different dynamic behaviour.  相似文献   

5.
A computational study is performed on a series of four piloted, lean, premixed turbulent jet flames. These flames use the Sydney Piloted Premixed Jet Burner (PPJB), and with jet velocities of 50, 100, 150 and 200 m/s are denoted PM150, PM1100, PM1150 and PM1200, respectively. Calculations are performed using the RANSPDF and LESPDF methodologies, with different treatments of molecular diffusion, with detailed chemistry and flamelet-based chemistry modelling, and using different imposed boundary conditions. The sensitivities of the calculations to these different aspects of the modelling are compared and discussed. Comparisons are made to experimental data and to previously-performed calculations. It is found that, given suitable boundary conditions and treatment of molecular diffusion, excellent agreement between the calculations and experimental measurements of the mean and variance fields can be achieved for PM150 and PM1100. The application of a recently developed implementation of molecular diffusion results in a large improvement in the computed variance fields in the LESPDF calculations. The inclusion of differential diffusion in the LESPDF calculations provides insight on the behaviour in the near-field region of the jet, but its effects are found to be confined to this region and to the species CO, OH and H2. A major discrepancy observed in many previous calculations of these flames is an overprediction of reaction progress in PM1150 and PM1200, and this discrepancy is also observed in the LESPDF calculations; however, a parametric study of the LESPDF mixing model reveals that, with a sufficiently large mixing frequency, calculations of these two flames are capable of yielding improved reaction progress in good qualitative agreement with the mean and RMS scalar measurements up to an x/D of 30. Lastly, the merits of each computational methodology are discussed in light of their computational costs.  相似文献   

6.
7.
A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.  相似文献   

8.
Large eddy simulation (LES) is conducted of the Sandia Flame D [Proc. Combust. Inst. 27 (1998) 1087, Sandia National Laboratories (2004)], which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology [J. Fluid Mech. 401 (1999) 85]. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities [Turbulent Flows (2000)]. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme. This is the first LES of a realistic turbulent flame using the transported PDF method as the SGS closure. The results via this method capture important features of the flame as observed experimentally.  相似文献   

9.
The numerical modelling of alkali metal reacting dynamics in turbulent pulverised-coal combustion is discussed using tabulated sodium chemistry in large eddy simulation (LES). A lookup table is constructed from a detailed sodium chemistry mechanism including five sodium species, i.e. Na, NaO, NaO2, NaOH and Na2O2H2, and 24 elementary reactions. This sodium chemistry table contains four coordinates, i.e. the equivalence ratio, the mass fraction of the sodium element, the gas-phase temperature, and a progress variable. The table is first validated against the detailed sodium chemistry mechanism by zero-dimensional simulations. Then, LES of a turbulent pulverised-coal jet flame is performed and major coal-flame parameters compared against experiments. The chemical percolation devolatilisation (CPD) model and the partially stirred reactor (PaSR) model are employed to predict coal pyrolysis and gas-phase combustion, respectively. The response of the five sodium species in the pulverised-coal jet flame is subsequently examined. Finally, a systematic global sensitivity analysis of the sodium lookup table is performed and the accuracy of the proposed tabulated sodium chemistry approach has been calibrated.  相似文献   

10.
In this work, we present a detailed comparison between the conventional Partially Stirred Reactor (PaSR) combustion model and two implicit combustion models, named Quasi Laminar Finite Rate (QLFR) model and Laminar Finite Rate (LFR) model, respectively. Large Eddy Simulation (LES) is employed and the Adelaide Jet in Hot Co-flow (AJHC) burner is chosen as validation case. In the implicit combustion models, the filtered source term comes directly from the chemical term, without inclusion of turbulence effects. Results demonstrate that the two implicit models behave similarly to the conventional PaSR model, for the mean and root-mean-square of the temperature and species mass fractions, and that all models provide very satisfactory predictions, especially for the mean values. This justifies the use of implicit combustion models in low Damköhler number (Da ?≤? 1.0) systems. The QLFR model allows to reduce the computational cost of about three times, compared to the LFR model. Moreover, the comparison between two 4-step global mechanisms and the KEE58 mechanism proves the importance of finite rate chemistry in MILD combustion.  相似文献   

11.
Large Eddy simulation (LES) has been applied to the pulverised coal jet flame studied at the Japanese Central Research Institute of Electric Power (CRIEPI). A working set of models to represent coal combustion, Lagrangian particle transport and radiative heat transfer in an LES framework has been implemented and tested. The simulation results of the flow field were compared to experimental data for both a reactive and non-reactive case, and an overall good agreement emerged. A simple method for replicating pyrometer measurements was developed for the LES and results obtained from the method were compared to the experimental data. Finally the species concentrations were compared to experimental results for CO2, O2 and N2. The results show the potentials of using LES for pulverised coal combustion and open the way for further developments on the coal combustion models and the applications to more complex burners.  相似文献   

12.
A modified version of the Least-Square QR-factorisation (LSQR) algorithm has been implemented in conjunction with Conditional Source-term Estimation (CSE) for lean, turbulent premixed methane–air combustion via Large Eddy Simulation (LES). The iterative solver can reduce computational times by an order of magnitude during the inversion phase of CSE in comparison with the conventional LU-decomposition method. The advantages of iterative and parallel iterative solvers become more prominent as the size of the system increases. The ensemble selection procedure for computing averages within localised regions of the simulation domain has also been updated to a dynamic routine. This allows for more flexible and efficient allocation of computational resources along with reduced input from the user, especially for complex geometries. Preliminary LES calculations have shown that the implementation of an iterative solver and a dynamic ensemble selection algorithm will reduce computational times significantly with negligible error contribution for one-condition CSE, which is applicable to purely premixed or non-premixed turbulent combustion problems. In addition, these algorithms provide the foundation for exceptional computational cost savings for the inversion in two-condition CSE, or Doubly Conditional Source-term Estimation (DCSE), which has shown promise for predicting partially-premixed combustion. Parallel computation of the inverse solution is particularly beneficial to DCSE as the computational cost of the inversion process is considerably larger than in one-condition CSE.  相似文献   

13.
14.
Conditional source-term estimation (CSE) is a method to close the mean chemical reaction source-term in an averaged transport equation. It is used with a trajectory generated low-dimensional manifold (TGLDM) to simulate a turbulent non-premixed flame. Integral equations are inverted for two progress variables, YCO2|ξ and YH2O|ξ, by assuming spatial homogeneity in the conditional averages. Using these two progress variables, the conditional source terms of temperature and other scalars are interpolated from the TGLDM table and mapped back into the physical space to be substituted into the transport equations. Solving a transport equation using a source-term interpolated from the TGLDM is found to improve the prediction of NO over simply interpolating the mass fraction of NO directly from the TGLDM. This method has been applied in a large eddy simulation (LES) of a turbulent non-premixed flame. Both GRI-Mech 3.0 and GRI-Mech 2.11 are found to be able to predict the temperature and major species well. However, only GRI-Mech 2.11 gives an acceptable prediction of NO. It is found that major species can be interpolated from the TGLDM table which can significantly reduce the computational cost.  相似文献   

15.
The need for improved engine efficiencies has motivated the development of high-pressure combustion systems, in which operating conditions achieve and exceed critical conditions. Associated with these conditions are strong variations in thermo-transport properties as the fluid undergoes mixing and phase transition, and two-stage ignition with low-temperature combustion. Accurately simulating these physical phenomena at real-fluid environments remains a challenge. This study examines a diffuse-interface method for simulating the injection and ignition of n-dodecane at transcritical conditions. To this end, a compressible solver with a real-fluid state equation and finite-rate chemistry is employed. Simulations of an ECN-relevant diesel-fuel injector are performed for both inert and reacting conditions. For the spray ignition, four specific operating points (corresponding to ambient temperatures between 900 K and 1200 K) are investigated to examine effects of the real-fluid environment and low-temperature chemistry. Comparisons with available experimental data demonstrate that the presented numerical method adequately captures the diesel fuel injection and auto-ignition processes under transcritical conditions.  相似文献   

16.
17.
Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO 2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle.  相似文献   

18.
An experimental investigation of self-excited combustion instabilities in a high pressure, lean premixed natural gas jet flame is presented. The combustor is designed with optical access and is instrumented with high frequency pressure transducers at multiple axial and circumferential locations. OH*-chemiluminescence measurements performed at a frequency of 50 kHz were temporally synchronized with the acoustic measurements recorded from the pressure transducer array during the test. Two representative test conditions are analyzed in detail: Flame 1 (F1) that presents longitudinal mode dynamics (p/pc=3%) and Flame 2 (F2) that presents high amplitude transverse instabilities (p/pc=15%). Singular Spectrum Analysis (SSA) and Dynamic Mode Decomposition (DMD) analysis indicate a strong correlation of both instabilities to flame-vortex interactions. Longitudinal mode instabilities are correlated with axisymmetric vortex shedding about the combustor axis that result in periodic axial variations in heat release at the 1L frequency. Transverse mode instabilities correspond to asymmetric vortex shedding pattern that drive transverse variations in heat release at the fundamental 1T frequency of the combustion chamber. The phase relationship of the flame emission intensity and the chamber head-end pressure measurement at the 1T frequency indicates presence of a non-stationary transverse mode that rotates about the chamber axis at 55 Hz.  相似文献   

19.
Large Eddy Simulations (LES) of kerosene spray combustion in an axial-swirl combustor have been carried out focusing on the effect of the evaporating droplets on the flame temperature and species concentrations. The LES-PDF methodology is used for both dispersed (liquid) and gas phases. The liquid phase is described using a Lagrangian formulation whilst an Eulerian approach is employed for the gas phase. The predictive capability of LES with sub-grid scale models for spray dispersion and evaporation is assessed placing emphasis on the effect of the unresolved velocity and temperature fields on the droplet evaporation rate. The results of the fully coupled LES formulation exhibit good agreement between the measured and simulated mean velocity fields. The global behaviour of the spray combustion, such as droplet dispersion and evaporation, are captured reasonably well in the simulations. It was found that the large velocity fluctuations observed in the shear layer strongly affect the evaporation rate and thus the temperature distributions. The present work also demonstrated the feasibility of LES to study complex flow features which are typical of gas-turbine combustion chambers.  相似文献   

20.
A premixed propane–air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and destruction in the model afterburner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号