共查询到20条相似文献,搜索用时 11 毫秒
1.
We consider the propagation of laminar premixed flames in the presence of a parallel flow whose scale is smaller than the laminar flame thickness. The study addresses fundamental aspects with relevance to flame propagation in narrow channels, to the emerging micro-combustion technology, and to the understanding of the effect of small scales in a (turbulent) flow on the flame structure. In part, the study extends the results of a previous analytical study carried out in the thick flame asymptotic limit which has in particular addressed the validity of Damköhler's second hypothesis in the context of laminar steady parallel flows. Several new contributions are made here. Analytical contributions include the derivation of an explicit formula for the effective speed of a premixed flame U T in the presence of an oscillatory parallel flow whose scale ? (measured with the laminar flame thickness δ L ) is small and amplitude A (measured with the laminar flame speed U L ) is (1). The formula shows a quadratic dependence on both the amplitude and the scale of the flow. The validity of the formula is established analytically in two distinguished limits corresponding to (1) frequencies of oscillations (measured with the natural frequency of the flame U L /δ L ), and to higher frequencies of (A/?) (the natural frequency of the flow). The analytical study yields partial support of Damköhler's second hypothesis in that it shows that the flame behaves as a planar flame (to leading order) with an increased propagation speed which depends on both the scale and amplitude of the velocity fluctuation. However our formula for U T contradicts the formula given by Damköhler in his original paper where U T has a square root dependence on the scale and amplitude. Numerical contributions include a significant set of two-dimensional calculations which determine the range of validity of the asymptotic findings. In particular, these account for volumetric heat loss and differential diffusion effects. Good agreement between the numerics and asymptotics is found in all cases, both for steady and oscillatory flows, at least in the expected range of validity of the asymptotics. The effect of the frequency of oscillation is also discussed. Additional related aspects such as the difference in the response of thin and thick flames to the combined effect of heat loss and fluid flow are also addressed. It is found for example that the sensitivity of thick flames to volumetric heat loss is negligibly affected by the parallel flow intensity, in marked contrast to the sensitivity of thin flames. Interestingly, and somewhat surprisingly, thin flames are found to be more resistant to heat loss when a flow is present, even for unit Lewis number; this ceases to be the case, however, when the Lewis number is large enough. 相似文献
2.
In this paper we investigate the acceleration of the expansion of premixed spherical flames and evolution of the cellular patterns on their surfaces. An asymptotic model is used for the simulations and a spectral numerical algorithm is employed to study flames over large time intervals. Numerous numerical experiments indicate that for large enough time the acceleration of a two-dimensional expanding flame slows down but the expansion rate is still able to reach values significantly exceeding the burning rate of an exactly circular flame. The importance of the effect of forcing was also confirmed and the validity of simulations of sectors of circular flame fronts was studied in order to justify prospective use of the Fourier spectral model for three-dimensional spherical flames. 相似文献
3.
Flame dynamics 总被引:1,自引:0,他引:1
Moshe Matalon 《Proceedings of the Combustion Institute》2009,32(1):57-82
This lecture describes recent theoretical developments associated with the dynamics of flames, obtained primarily by exploiting the various temporal and length scales involved in the combustion process. In premixed flames the focus is on flame-flow interactions that occur during the nonlinear development of hydrodynamically unstable large-scale flames, or during the propagation of curved flames in two-dimensional channels. The second part of the paper deals with non-premixed and partially premixed flames, where the focus is on understanding the nature of diffusive-thermal instabilities including the effect of thermal expansion, and on stabilization mechanisms of edge flames, which possess characteristics of both premixed and diffusion flames. The results presented in this talk illustrate how simplified models, when analyzed to their extreme, yield predictions of qualitative nature with physical insight that have advanced our understanding of combustion. This insight can be used to guide the experimental efforts, explain observations and validate large-scale numerical simulations. 相似文献
4.
Flame synthesis of single-walled carbon nanotubes 总被引:1,自引:0,他引:1
Murray J. Height Jack B. Howard Jefferson W. Tester 《Proceedings of the Combustion Institute》2005,30(2):2537-2543
Flames offer potential for synthesis of carbon nanotubes in large quantities at considerably lower costs than that of other methods currently available. This study aims to examine conditions for carbon nanotube formation in premixed flames and to characterize the morphology of solid carbon deposits and their primary formation mechanisms in the combustion environment. Single-walled nanotubes have been observed in the post-flame region of a premixed acetylene/oxygen/15 mol% argon flame operated at 6.7 kPa with Fe(CO)5 vapor used as a source of metallic catalyst necessary for nanotube growth. Thermophoretic sampling and transmission electron microscopy were used to characterize the solid material present in the flame at various heights above burner (HAB), giving a resolution of formation dynamics within the flame system. Catalyst particle formation and growth is observed to dominate the immediate post-flame region (10–40 mm HAB). Nanotubes were observed to be present after 40 mm HAB with nanotube inception occurring as early as 30 mm HAB. Between 40 and 70 mm HAB, nanotubes are observed to coalesce into clusters. A nanotube formation ‘window’ is evident with formation limited to fuel equivalence ratios between 1.5 and 1.9. A continuum of morphologies ranging from relatively clean clusters of nanotubes to amorphous material is observed between these lower and upper limits. High-resolution TEM and Raman spectroscopy revealed nanotube bundles with each nanotube being single-walled with diameters between 0.9 and 1.5 nm. 相似文献
5.
T. Lachaux F. Halter C. Chauveau I. Gkalp I.G. Shepherd 《Proceedings of the Combustion Institute》2005,30(1):819-826
An experimental study on lean turbulent premixed methane–air flames at high pressure is conducted by using a turbulent Bunsen flame configuration. A single equivalence ratio flame at Φ = 0.6 is explored for pressures ranging from atmospheric pressure to 0.9 MPa. LDA measurements of the cold flow indicate that turbulence intensities and the integral length scale are not sensitive to pressure. Due to the decreased kinematic viscosity with increasing pressure, the turbulent Reynolds numbers increase, and isotropic turbulence scaling relations indicate a large decrease of the smallest turbulence scales. Available experimental results and PREMIX code computations indicate a decrease in laminar flame propagation velocities with increasing pressure, essentially between the atmospheric pressure and 0.5 MPa. The u′/SL ratio increases therefore accordingly. Instantaneous flame images are obtained by Mie scattering tomography. The images and their analysis show that pressure increase generates small scale flame structures. In an attempt to generalize these results, the variance of the flamelet curvatures, the standard deviation of the flamelet orientation angle, and the flamelet crossing lengths have been plotted against which is proportional to the ratio between the integral and Taylor length scales, and which increases with pressure. These three parameters vary linearly with the ratio between large and small turbulence scales and clearly indicate the strong effect of this parameter on premixed turbulent flame dynamics and structure. An obvious consequence is the increase in flame surface density and hence burning rate with pressure, as confirmed by its direct determination from 2D tomographic images. 相似文献
6.
This paper reports the effect of inlet flow turbulence intensity on the combustion instability characteristics in a backward facing step combustor. The inlet turbulence intensity is varied by a turbulence generator. Unsteady pressure measurements and OH* chemiluminescence images are recorded over a wide range of operating conditions at different inlet turbulence intensities. The study shows an early onset of instability at low turbulence level, i.e., higher turbulence postpones the onset of instability to higher Reynolds number Re and/or higher equivalence ratio Φ. The early onset of instability in the Re and Φ parameter spaces is due to the change in system parameters such as flame speed and size of the recirculation zone downstream of the step at different turbulence levels. Further, the onset is characterized as subcritical bifurcation. At low Re, the hysteresis zone width is small for low turbulence levels and it is large at higher turbulence levels; and at higher Re, the hysteresis width remains constant at all turbulence levels. Investigation of instability characteristics reveals that there are momentary slippages from limit cycle orbit into brief silent regimes in an intermittent manner. The frequency of occurrence of the momentary silent regimes increases with reduction in turbulence, indicating that higher turbulence helps in maintaining the system in a stable limit cycle orbit. High-speed chemiluminescence imaging reveals the necessity of the vortex rollup in the recirculation zone to grow up to the top wall by dilatation from the heat release for the onset of instability. Considerations of the effect of turbulence on both the flame speed and the recirculation zone size together explain all the observed bifurcation trends. These results suggest that inlet flow turbulence should not just be considered as background noise. The turbulence effects on both the flame and flow should be considered in predicting the instability characteristics. 相似文献
7.
The general analytical expression of the stochastic electromagnetic vortex beams through turbulent biological tissues is derived based on the fractal model. The statistical properties, including the spectral density, the spectral degree of coherence and the spectral degree of polarization are investigated in detail. It can be found that the normalized spectral density of the stochastic electromagnetic vortex beams with higher topological charge is less influenced by turbulence than that with lower topological charge. In addition, the change of the degree of polarization versus propagation distance of the anisotropic vortex beams in biological tissues differs from that of the isotropic vortex beams. The findings might be useful in the investigation of the structures of biological tissues and operation of communication and sensing systems involving biological tissues turbulence channels. 相似文献
8.
Temporal evolution of flame stretch due to turbulence and the hydrodynamic instability 总被引:1,自引:0,他引:1
A.M. Steinberg J.F. Driscoll S.L. Ceccio 《Proceedings of the Combustion Institute》2009,32(2):1713-1721
The temporal evolution of the strain rate on a turbulent premixed flame was measured experimentally using cinema-stereoscopic particle image velocimetry. Turbulence strains a flame due to velocity gradients associated both directly with the turbulence and those caused by the hydrodynamic instability, which are initiated by the turbulence. The development of flame wrinkles caused by both of these mechanisms was observed. Wrinkles generated by the turbulence formed around vortical structures, which passed through the flame and were attenuated. After the turbulent structures had passed, the hydrodynamic instability flow pattern developed and caused additional strain. The hydrodynamic instability also caused the growth of small flame front perturbations into large wrinkles. In the moderately turbulent flame investigated, it was found that the evolution of the strain rate caused by turbulence–flame interactions followed a common pattern involving three temporal regimes. In the first, the turbulence exerted extensive (positive) strain on the flame, creating a wrinkle that had negative curvature (concave towards the reactants). This was followed by a transition period, leading into the third regime in which the flow pattern and strain rate were dominated by the hydrodynamic instability mechanism. It was also found that the magnitudes of the strain rate in the first and third regimes were similar. Hence, the hydrodynamic instability mechanism caused significant strain on a flame and should be included in turbulent combustion models. 相似文献
9.
在产生涡旋光束过程中, 固体激光器所输出的光束中心 很难与螺旋相位板的中心完全对准, 实际出射的光束为离轴涡旋光束. 在衍射理论的基础上, 对离轴涡旋光束的传输进行了研究, 推导了离轴涡旋光束传输一段距离后电场和光强的解析表达式.研究表明, 与理想的涡旋光束不同, 离轴涡旋光束具有非对称性的光强分布, 在传输过程中光斑除了展宽外, 涡旋暗核还会发生移动. 拓扑电荷数的大小只影响到光束的展宽, 拓扑电荷数为正时, 暗核沿着逆时针切线方向移动; 拓扑电荷数为负时, 暗核沿着顺时针的切线方向移动, 该结果对长距离探测涡旋光束的对准问题起到指导作用. 相似文献
10.
B. Fiorina O. Gicquel L. Vervisch S. Carpentier N. Darabiha 《Proceedings of the Combustion Institute》2005,30(1):867-874
Tabulated chemistry and presumed probability density function (PDF) approaches are combined to perform RANS modeling of premixed turbulent combustion. The chemistry is tabulated from premixed flamelets with three independent parameters: the equivalence ratio of the mixture, the progress of reaction, and the specific enthalpy, to account for heat losses at walls. Mean quantities are estimated from presumed PDFs. This approach is used to numerically predict a turbulent premixed flame diluted by hot burnt products at an equivalence ratio that differs from the main stream of reactants. The investigated flame, subjected to high velocity fluctuations, has a thickened-wrinkled structure. A recently proposed closure for scalar dissipation rate that includes an estimation of the coupling between flame wrinkling and micromixing is retained. Comparisons of simulations with experimental measurements of mean velocity, temperature, and reactants are performed. 相似文献
11.
The propagation of premixed laminar flame in ducts of circular cross-section considering a thermal-diffusive model is investigated numerically. Heat losses by conduction to the channels walls are taken into account using the thermally thin wall regime. The effects and the relationship between thickness and diameter of the tube with the flame speed propagation are studied and the quenching condition is obtained as a function of the heat-loss parameter. The mathematical model employs the axisymmetric energy and species equations. The calculations are based on a two-step chemistry, with an Arrhenius, energetically neutral, radical production reaction followed by an exothermic radical recombination reaction. For large values of the heat-loss parameter, the wall temperature is close to the free stream temperature and all the heat losses through the wall are convected away. No heat feedback occurs. On the other hand, for small values of the heat-loss parameter, a feedback mechanism occurs by transferring heat from the burned gas to the fresh mixture along the tube wall. For values of the heat-loss parameter of order unity, the heat feedback mechanism is able to sustain the flame propagation and the quenching condition disappears, producing an almost planar flame front as the propagation velocity reduces. For this two-step reaction mechanism, the radical species behaviour at the duct walls seems to have negligible effect on the quenching process. 相似文献
12.
利用可调谐同步辐射真空紫外光电离和分子束质谱技术研究了当量为1的低压、预混乙烯/氧气/氩气火焰.利用光电离效率谱和光电离质谱,探测了火焰中燃烧中间物,并鉴别了C3H4、C2H4O和C4H4等中间物的同分异构体.在近电离阈值光予能量下,通过扫描燃烧炉的位置测量了火焰中物质的摩尔分数曲线,并利用Pt/Pt-13%Rh热电偶测得了火焰的温度曲线.与以前的工作相比,观察到很多新的燃烧中间物,如C3H2、C3H3、C3H5、C2H6O、C4H2、C4H4、C4H6、C3H4O、C3H6O、C3H8O、C5H6、C4H8O和C7H8等.同时,在火焰中检测到了包括CH3、C2H3、C2H5、HCO、C3H3以及C3H5在内的一系列自由基.在实验工作的基础上,发展了一个包含40种火焰物质和223个基元反应的简化动力学模型来对火焰进行模拟.对主要物质和大部分中间产物的拟合结果与实验值相当吻合. 相似文献
13.
Large Eddy Simulation of flame stabilisation dynamics and vortex control in a lifted H2/N2 jet flame
Christophe Duwig 《Combustion Theory and Modelling》2013,17(3):325-346
Flame stabilisation in (highly) preheated mixture is common in several industrial applications. When the reactants are injected separately in the device (usually at high-speed), the flame is lifted so that the fuel and oxidant first mix to give an ignitable mixture. If the temperature of the mixture is adequate, it auto-ignites stabilizing the flame. Here we focus on an academic lifted jet flame and Large Eddy Simulation (LES) is used to capture the flame and auto-ignition dynamics. Comparisons with experimental data show that LES simulates accurately high OH fluctuation levels at the stabilisation location. The vortex dynamics linked to these fluctuations is analyzed and it is found that small scale coherent structures play a vital role in the auto-ignition process. These structures are axial vorticity tubes (braids) and are located relatively far (in the radial direction) from the shear-layer. As a consequence, the lift-off height varies dramatically in time leading to OH fluctuations of the order of the mean OH concentration. This scenario is monitored in the compositional space highlighting the simultaneous evolution of OH, HO 2 and temperature. Further, different strategies for open-loop control of the flame lift-off height are tested. In order to anchor the flame at different positions downstream of the nozzle, the vortex dynamics in the shear-layer was modified. Promoting successively vortex ring and braids, the auto-ignition region was moved significantly. In particular, modified nozzle geometries impacted the formation of braids and ensured a good premixing very close to the nozzle. As a consequence, it was possible to reduce significantly the lift-off height and stabilise the flame few diameters downstream of the nozzle. 相似文献
14.
Propagation dynamics of the cosh-Airy vortex(CAiV) beams in a chiral medium is investigated analytically with Huygens–Fresnel diffraction integral formula. The results show that the CAiV beams are split into the left circularly polarized vortex(LCPV) beams and the right circularly polarized vortex(RCPV) beams with different propagation trajectories in the chiral medium. We mainly investigate the effect of the cosh parameter on the propagation process of the CAiV beams.The propagation characteristics, including intensity distribution, propagation trajectory, peak intensity, main lobe's intensity, Poynting vector, and angular momentum are discussed in detail. We find that the cosh parameter affects the intensity distribution of the CAiV beams but not its propagation trajectory. As the cosh parameter increases, the distribution areas of the LCPV and RCPV beams become wider, and the side lobe's intensity and peak intensity become larger. Besides, the main lobe's intensity of the LCPV and RCPV beams increase with the increase of the cosh parameter at a farther propagation distance, which is confirmed by the variation trend of the Poynting vector. It is significant that we can vary the cosh parameter to control the intensity distribution, main lobe's intensity, and peak intensity of the CAiV beams without changing the propagation trajectory. Our results may provide some support for applications of the CAiV beams in optical micromanipulation. 相似文献
15.
Mesoscale flame propagation and extinction of premixed flames in channels are investigated theoretically and experimentally. Emphasis is placed on the effect of wall heat loss and the wall–flame interaction via heat recirculation. At first, an analytical solution of flame speed in mesoscale channels is obtained. The results showed that channel width, flow velocity, and wall thermal properties have dramatic effects on the flame propagation and lead to multiple flame regimes and extinction limits. With the decrease in channel width, there exist two distinct flame regimes, a fast burning regime and a slow burning regime. The existence of the new flame regime and its extended flammability limit render the classical quenching diameter inapplicable. Furthermore, the results showed that at optimum conditions of flow velocity and wall thermal properties, mesoscale flames can propagate faster than the adiabatic flame. Second, numerical simulation with detailed chemistry demonstrated the existence of multiple flame regimes. The results also showed that there is a non-linear dependence of the flame speed on equivalence ratio. Moreover, it is shown that the Nusselt number has a significant impact on this non-linear dependence. Finally, the non-linear dependence of flame speed on equivalence ratio for both flame regimes is measured using a C3H8–air mixture. The results are in good agreement with the theory and numerical simulation. 相似文献
16.
A data processing scheme with particular emphasis on proper flame contour smoothing is developed and applied to measure the three-dimensional mean flame surface area ratio in turbulent premixed flames. The scheme is based on the two-sheet imaging technique such that the mean flame surface area ratio is an average within a window covering a finite section of the turbulent flame brush. This is in contrast to the crossed-plane tomograph technique which applies only to a line. Two sets of Bunsen flames have been investigated in this work with the turbulent Reynolds number up to 4000 and the Damköhler number ranging from less than unity to close to 10. The results show that three-dimensional effects are substantial. The measured three-dimensional mean flame surface area ratio correlates well with a formula similar to the Zimont model for turbulent burning velocity but with different model constants. Also, the mean flame surface area ratio displays a weak dependency on turbulence intensity but a strong positive dependency on the turbulence integral length scale. 相似文献
17.
在近轴光束近似条件下,采用交叉谱密度传输公式推导了 部分相干涡旋光束传输一段距离后观测平面上交叉谱密度矩阵元的解析表达式, 在此基础上对观测平面上的光强分布进行了分析.研究表明, 和完全相干涡旋光束不同,部分相干涡旋光束传输后光斑中心点的光强会逐渐凸现出来, 随着传输距离的增加,观测平面上的光强会逐渐演变为类似高斯型分布的特性. 这种演变规律与源平面上光源的拓扑电荷数和相干长度有关, 在其他参数不变的情况下,拓扑电荷数越小,相干长度越短, 演变为高斯型光斑的速度越快.最后针对一阶部分相干高斯涡旋光束, 通过观测平面上光强极值研究,对光斑随传输距离演变的过程进行了详细的分析, 在理论上对这种演变规律给出了严格的证明. 相似文献
18.
The present study examines, in presence of thermal expansion effects, the existence of the multiplicity of solutions previously reported within the context of diffusive-thermal modeling in [15], for lean premixed flames with low Lewis number (Le?<?1) propagating in narrow circular adiabatic channels subject to a Poiseuille flow. For this, direct numerical simulations have been carried out within the framework of variable-density Navier–Stokes equations and zero-Mach-number approximation. The simulations, conducted for both axisymmetric and three-dimensional cylindrical geometries, confirm the coexistence of multiple steady flame structures for a given flow rate. They show that axisymmetric flames concave towards the upstream are more unstable to three-dimensional perturbations than convex (toward the upstream) flames. This result evinces earlier findings obtained from stability analysis. The non-axisymmetry property of the flame is also found to push back the critical flashback limits at larger flow rate when compared to those predicted under the assumption of flame axisymmetry. 相似文献
19.
《Journal of magnetism and magnetic materials》1986,61(3):321-329
Flat lozenge-type domains in a NiCoP onefold layer may propagate under the influence of a transverse field and two electric currents. The domain behaviour was analyzed step by step using digital image processing in the static and semidynamic conditions.The two phases of the domain propagations ate due to the local variable coercivity, domain wall transformation freom asymmetric Bloch into asymmetric Néel type and domain tip coercivity. 相似文献