首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Field and temperature dependence of hole mobility in N,N-diphenyl-N,N-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TPD) doped in polystyrene (PS) is studied using the transient photoconductivity technique. We observe both the positive and negative field dependence of mobility with increasing field and temperature. The field and temperature at which negative field dependence begins is low compared with earlier reports on similar systems (with 20 wt% dopant concentration). Results are discussed on the basis of the Gaussian disorder model (GDM), which predicts that the interplay of both the energetic and positional disorder of dopant molecules in the sample decides the slope of the logμ versus E1/2 plot. The observed mobility dependence is rationalized on the basis of low energetic disorder in the sample. The reason for low energetic disorder is purely due to the film morphology of the sample. Even for a dopant concentration of 20 wt%, we observe clustering and chaining of TPD molecules, which may provide low energetic and positional disorder.  相似文献   

2.
The spin thermoelectric properties of a zigzag edged ferromagnetic (FM) graphene nanoribbon are studied theoretically by using the non-equilibrium Green's function method combined with the Landauer-Büttiker formula. By applying a temperature gradient along the ribbon, under closed boundary conditions, there is a spin voltage ΔV(s) inside the terminal as the response to the temperature difference ΔT between two terminals. Meanwhile, the heat current ΔQ is accompanied from the 'hot' terminal to the 'cold' terminal. The spin thermopower S?=?ΔV(s)/ΔT and thermoconductance κ?=?ΔQ/ΔT are obtained. When there is no magnetic field, S versus E(R) curves show peaks and valleys as a result of band selective transmission and Klein tunneling with E(R) being the on-site energy of the right terminal. The results are in agreement with the semi-classical Mott relation. When |E(R)|??M, the quantized value of [Formula: see text] appears. In the quantum Hall regime, because Klein tunneling is suppressed, S peaks are eliminated and the quantized value of κ is much clearer. We also investigate how the thermoelectric properties are affected by temperature, FM exchange split energy and Anderson disorder. The results indicate that S and κ are sensitive to disorder. S is suppressed for even small disorder strengths. For small disorder strengths, κ is enhanced and for moderate disorder strengths, κ shows quantized values.  相似文献   

3.
The process of triplet–triplet annihilation (TTA) of 1,2-benzanthracene (1,2-BA) incorporated into polymer films of polyvinyl butyral has been investigated in the temperature interval 80–360 K. An analysis of the kinetics of the decay of delayed annihilation fluorescence (DAF) of 1,2-BA has shown that the process of the triplet excitation energy transfer in a disperse medium of the polymer at distant times of the DAF decay can be described using the approximation of random walks of the triplet energy in the inhomogeneous medium of the polymer. At low temperatures, at the initial times of DAF decay the TTA process is described with the aid of a model of static annihilation.  相似文献   

4.
We calculate the Hall conductivity sigma(xy) and resistivity rho(xy) of a granular system at large tunneling conductance g(T)>1. We show that in the absence of Coulomb interaction the Hall resistivity depends neither on the tunneling conductance nor on the intragrain disorder and is given by the classical formula rho(xy)=H/(n*ec), where n* differs from the carrier density n inside the grains by a numerical coefficient determined by the shape of the grains. The Coulomb interaction gives rise to logarithmic in temperature T correction to rho(xy) in the range Gamma less or similar T less or similar min(g(T)E(c), E(Th)), where Gamma is the tunneling escape rate, E(c) is the charging energy, and E(Th) is the Thouless energy of the grain.  相似文献   

5.
It is known that the joint measures on the product of spin-space and disorder space are very often non-Gibbsian measures, for lattice systems with quenched disorder, at low temperature. Are there reflections of this non-Gibbsianness in the corresponding mean-field models? We study the continuity properties of the conditional probabilities in finite volume of the following mean field models: (a) joint measures of random field Ising, (b) joint measures of dilute Ising, (c) decimation of ferromagnetic Ising. The conditional probabilities are functions of the empirical mean of the conditionings; so we look at the large volume behavior of these functions to discover non-trivial limiting objects. For (a) we find (1) discontinuous dependence for almost any realization and (2) dependence of the conditional probabilities on the phase. In contrast to that we see continuous behavior for (b) and (c), for almost any realization. This is in complete analogy to the behavior of the corresponding lattice models in high dimensions. It shows that non-Gibbsian behavior which seems a genuine lattice phenomenon can be partially understood already on the level of mean-field models.  相似文献   

6.
We have investigated the effect of an in-plane parallel magnetic field (B(axially) on two high mobility metallic-like dilute two-dimensional hole gas systems in GaAs quantum wells. The experiments reveal that, while suppressing the magnitude of the low temperature resistance drop, B(axially) does not affect E(a), the characteristic energy scale of the metallic resistance drop. The field B(c) at which the metallic-like resistance drop vanishes is dependent on both the width of the quantum well and the orientation of B(axially). It is unexpected that E(a) is unaffected by B(axially) up to B(c) despite the fact that the Zeeman energy at B(c) is roughly equal to E(a).  相似文献   

7.
Transition temperature data obtained as a function of particle density in the 4He-Vycor system are compared with recent theoretical calculations for 3D Bose-condensed systems. In the low density dilute Bose gas regime we find, in agreement with theory, a positive shift in the transition temperature of the form DeltaT/T0 = gamma(na(3))(1/3). At higher densities a maximum is found in the ratio of T(c)/T0 for a value of the interaction parameter, na(3), that is in agreement with path-integral Monte Carlo calculations.  相似文献   

8.
Critical phenomena in systems with long(bu t finite)-range-correlated disorder of "random temperature" are studied. The disorder with correlation function g (k)~v + w/(p + kd-a) (d is the spatial dimension) is considered. The critical behavior in an m-vector spin system with such a disorder is investigated by using renormalization-group expansion in ε = 4 - d and δ = 4 - a. The recursion relations of coupling constants for (T > Tc) are obtained. It is shown that critical phenomena in systems with such a pseudo-long-range disorder will exhibit crossover from tricritical to critical behavior for a < d. In the crossover regime the scaling relations are expected to break down.  相似文献   

9.
The effect of disorder on the superconducting transition temperature T(c) of cuprate superconductors is examined. Disorder is introduced into the cation sites in the plane adjacent to the CuO2 planes of two single-layer systems, Bi(2.0)Sr(1.6)Ln(0.4)CuO(6+delta) and La(1.85-y)Nd(y)Sr0.15CuO4. Disorder is controlled by changing rare earth (Ln) ions with a different ionic radius in the former, and by varying the Nd content in the latter with the doped carrier density kept constant. We show that this type of disorder works as weak scatterers in contrast to the in-plane disorder produced by Zn, but remarkably reduces T(c), suggesting novel effects of disorder on high-T(c) superconductivity.  相似文献   

10.
We study superconducting systems in the regime where superconductivity is destroyed by phase fluctuations. We find that the Nernst effect has a much sharper temperature decay than predicted by Gaussian fluctuations, with an onset temperature that tracks Tc rather than the pairing temperature. We find a close quantitative connection with diamagnetism--the ratio of magnetization to transverse thermoelectric conductivity reaches a fixed value at high temperatures. We interpret measurements on underdoped cuprates in terms of a dilute vortex liquid over a wide temperature range above Tc.  相似文献   

11.
In Li and Luo(2007 Phys. Rev. A 76 032327), the inequality(1/2)T≥ Q was identified as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of total T and quantum Q correlations in bipartite quantum states. Besides, Hayden et al(2006 Commun. Math. Phys. 265 95) have conjectured that, in some conditions within systems endowed with infinite-dimensional Hilbert spaces, quantum correlations may dominate not only half of total correlations but total correlations itself. Here, in a two-mode Gaussian state,quantifying T and Q respectively by the quantum mutual information I~G and the entanglement of formation(EoF) ε_F~G, we verify that ε_(F,R)~G,is always less than(1/2) I_R~G when I~G and ε_F~G are defined via the Rényi-2 entropy. While via the von Neumann entropy, ε_(F,V)~G,may even dominate I_V~G itself,which partly consolidates the Hayden conjecture, and partly, provides strong evidence hinting that the origin of this counterintuitive behavior should intrinsically be related to the von Neumann entropy by which the EoF ε_(F,V)~G,is defined, rather than related to the conceptual definition of the EoF ε_F. The obtained results show that—in the special case of mixed two-mode Gaussian states—quantum entanglement can be faithfully quantified by the Gaussian Rényi-2 EoF ε_(F,R)~G,.  相似文献   

12.
Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large scales and display negligible decoherence, they can serve as an ideal and versatile experimental playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum walks in large systems ( approximately 100 sites) and confirm quantum walks effects which were studied theoretically, including ballistic propagation, disorder, and boundary related effects.  相似文献   

13.
In the present paper, the results of the investigation of the decay kinetics of delayed luminescence of organic glasses are presented. A strong deviation of the decay of both phosphorescence and annihilation delayed fluorescence from the exponential law is observed. This effect is shown to be due to the relaxation process of electronic excitation energy in the system with large energetic disorder. At the same time, the presence of two time intervals in which the rate coefficient for triplet-triplet annihilation (TTA) reaction shows different dependence on time is observed. On a short time scale the classical behavior is observed, i.e., the reaction is well described by the second-order equation with a time-independent rate coefficient. At the limit of long times, we have strong dependence of rate coefficient on time, i.e., the electronic excitation energy transport is dispersive. It is shown that behavior observed for the rate coefficient for TTA reaction is due to the relaxation process (on short time scale) and the equilibrium energy migration (in long time limit).  相似文献   

14.
Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non-superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature T(c) shows a clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of T(c) with impurities. On the basis of the time dependent Ginzburg-Landau theory, we derive a model to account for this striking feature of T(c) in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated T(c) quantitatively agrees with experiments. We also focus on the effect of superconducting fluctuations on the upper critical fields H(c2) of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that H(c2) may be strongly enhanced by such fluctuations.  相似文献   

15.
We report the temperature (T) and perpendicular magnetic-field (B) dependence of the Hall resistivity rho(xy)(B) of dilute metallic 2D holes in GaAs over a broad range of temperature (0.02-1.25 K). The low B Hall coefficient, R(H), is found to be enhanced when T decreases. Strong magnetic fields further enhance the slope of rho(xy)(B) at all temperatures studied. Coulomb interaction corrections of a Fermi liquid (FL) in the ballistic regime can not explain the enhancement of rho(xy) which occurs in the same regime as the anomalous metallic longitudinal conductivity. In particular, although the metallic conductivity in 2D systems has been attributed to electron interactions in a FL, these same interactions should reduce, not enhance, the slope of rho(xy)(B) as T decreases and/or B increases.  相似文献   

16.
We report a systematic increase of the superconducting transition temperature T(c) with a biaxial tensile strain in MgB2 films to well beyond the bulk value. The tensile strain increases with the MgB2 film thickness, caused primarily by the coalescence of initially nucleated discrete islands (the Volmer-Weber growth mode.) The T(c) increase was observed in epitaxial films on SiC and sapphire substrates, although the T(c) values were different for the two substrates due to different lattice parameters and thermal expansion coefficients. We identified, by first-principles calculations, the underlying mechanism for the T(c) increase to be the softening of the bond-stretching E(2g) phonon mode, and we confirmed this conclusion by Raman scattering measurements. The result suggests that the E(2g) phonon softening is a possible avenue to achieve even higher T(c) in MgB2-related material systems.  相似文献   

17.
We derive via diagrammatic perturbation theory the scaling behavior of the condensate and superfluid mass density of a dilute Bose gas just below the condensation temperature, T(c). Sufficiently below T(c) particle excitations are described by mean field (Bogoliubov). Near T(c), however, mean field fails, and the system undergoes a second order phase transition, rather than first order as predicted by Bogoliubov theory. Both condensation and superfluidity occur at the same T(c), and have similar scaling functions below T(c), but different finite size scaling at T(c) to leading order in the system size. A self-consistent two-loop calculation yields the condensate fraction critical exponent, 2beta approximately 0.66.  相似文献   

18.
19.
We have studied the variation of transverse magnetoresistance of underdoped YBCO(6.6) crystals, either pure or with reduced T(c) down to 3.5 K by electron irradiation, in fields up to 60 T. We find evidence that the superconducting fluctuation contribution to the conductivity is suppressed only above a threshold field H(c)'(T), which is found to vanish at T(c)' > T(c). In the pure YBCO(6.6) sample, H(c)' is already 50 T at T(c). We find that increasing disorder weakly depresses H(c)'(0), T(c)', and T(nu), the onset of the Nernst signal. Thus, these energy scales appear more characteristic of the 2D local pairing than the pseudogap temperature which is not modified by disorder.  相似文献   

20.
An effective medium theory for low temperature phonons and other Goldstone excitations with diagonal and off-diagonal disorder is developed which preserves the herglotz property of the self-energy and is correct in both dilute limits c→0 and c→1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号