首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper analyses the hydrodynamic instability of a flame propagating in the space between two parallel plates in the presence of gas flow. The linear analysis was performed in the framework of a two-dimensional model that describes the averaged gas flow in the space between the plates and the perturbations development of two-dimensional combustion wave. The model includes the parametric dependences of the flame front propagation velocity on its local curvature and on the combustible gas velocity averaged along the height of the channel. It is assumed that the viscous gas flow changes the surface area of the flame front and thereby affects the propagation velocity of the two-dimensional combustion wave. In the absence of the influence of the channel walls on the gas flow, the model transforms into the Darrieus–Landau model of flame hydrodynamic instability. The dependences of the instability growth rate on the wave vector of disturbances, the velocity of the unperturbed gas flow, the viscous friction coefficients and other parameters of the problem are obtained. It is shown that the viscous gas flow in the channel can lead, in some cases, to a significant increase in instability compared with a flame propagating in free space. In particular, the instability increment depends on the direction of the gas flow with respect direction of the flame propagation. In the case when the gas flow moves in the opposite direction to the direction of the flame propagation, the pulsating instability can appear.  相似文献   

2.
This paper describes an analysis of the mechanisms of autoignition-controlled flame initiation and flame stabilization in a nonpremixed jet in crossflows, using simultaneous high-speed (10 kHz) tomographic particle image velocimetry, OH-PLIF and line-of-sight flame emissions. Measurements are conducted on a turbulent, transverse, reacting propane jet issued into a crossflow generated by combustion of natural gas at an equivalence ratio of 0.4 with the crossflow velocity of 10 m/s, the crossflow temperature of 1350 K and the jet momentum flux ratio of 41. While several prior studies have analyzed the lifted character of the flame in similar configurations, we show that several dynamic processes precede the leading edge of the lifted diffusion flame, including formation and evolution of “autoignition kernels”, “flame kernels” and “flame fragments”. “Autoignition kernels”, i.e., discrete compact reaction zones with the peak hydroxyl (OH) fluorescence intensity below that of the diffusion flame, initiate preferably at bulges along the jet periphery where the strain rates and the scalar dissipation rates are lower. The autoignition kernel grows in both size and the OH-fluorescence intensity as it convects downstream. An autoignition kernel transitions into a propagating flame kernel, which quickly gets distorted and elongated in the direction of the principal expansion strain rate to form a flame fragment. Neighboring flame fragments merge with each other and with the downstream diffusion flame via edge-flame propagation. Merging of upstream flame fragments with the downstream diffusion flame results in an upstream advancement of the diffusion-flame front. The diffusion flame front is intrinsically unsteady because of the rather random formation and evolution of autoignition kernels, flame kernels and flame fragments, presumably due to the stochastic velocity, the strain rate and mixture-fraction oscillations.  相似文献   

3.
This study investigates the flame-flow interaction during a fully-premixed swirl flame flashback from flame-frame-of-reference. To capture the flame front movement during upstream propagation, high-speed chemiluminescence imaging and simultaneous three-component PIV measurements are taken at 4 kHz. The upstream propagation of the flame occurs along a helical path around the center-body. For low-turbulence and high-swirl conditions (Reh = 4000, Swirl number ~ 0.9), the lab-frame speed of the flame structure remains nearly constant during the period of investigation. Simultaneously, the leading side of the flame tongue retains its topology during propagation. The steady-state propagation behavior of the flame structure and stationarity of the flame topology allows us to make a frozen-flame-surface assumption. Applying space-time equivalence, the three-dimensional flame surface and flow field are reconstructed by shifting and stacking the time-series of the planar flame front profiles and the three-component planar velocity data. Further, the steady flow in the flame frame-of-reference provides a powerful means of investigating the flame-flow interaction. Quasi-pathlines are constructed in the unburnt and burnt regions of the flow field. The motion of the approach flow along a quasi-pathline is analyzed to understand the role of centrifugal and Coriolis forces. It is shown that the tug-of-war situation between Coriolis and centrifugal forces gets disrupted by the dilatation-driven blockage effect from the flame surface. It leads to a radial deflection of the approach flow, which results in reduction in the flame-normal approach flow speed, thereby assisting in the flame propagation. In the burnt gas, the Coriolis Effect bends the pathlines towards the center-body. We show - for the first time - that the azimuthal motion of the flame assists in the upstream propagation of the flame structure. Error assessment shows that the approximations made to construct the flame-surface and the flow-field retains the physics of flame-flow interactions.  相似文献   

4.
In highly fluctuating flows, it happens that high values of the strain-rate do not induce extinction of the flame front. Unsteady effects minimize the flame response to rapidly varying strain fields. In the present study, the effects of time-dependent flows on non-premixed flames are investigated during flame/vortex interactions. Gaseous flames and spray flames in the external sheath combustion regime are considered. To analyse the flame/vortex interaction process, the velocity field and the flame geometry are simultaneously determined using particle imaging velocimetry and laser-induced fluorescence of the CH radical. The influence of vortex flows on the extinction limits for different vortex parameters and for different gaseous and two-phase flames is examined. If the external perturbation is applied over an extended period of time, the extinction strain-rate is that corresponding to the steady-state flame, and this critical value mainly depends on the fuel and oxidizer compositions and the injection temperature. If the external perturbation is applied during a short period of time, extinction occurs at strain-rates above the steady-state extinction strain-rate. This deviation appears for flow fluctuation timescales below steady flame diffusion timescales. This behaviour is induced by diffusive processes, limiting the ability of the flame to respond to highly fluctuating flows. With respect to unsteady effects, the spray flames investigated in this article behave essentially like gaseous flames, because evaporation takes place in a thin layer before the flame front. Extinction limits are only slightly modified by the spray, controlling process being the competition between aerodynamic and diffusive timescales.  相似文献   

5.
Resolving fluid transport at engine surfaces is required to predict transient heat loss, which is becoming increasingly important for the development of high-efficiency internal combustion engines (ICE). The limited number of available investigations have focused on non-reacting flows near engine surfaces, while this work focuses on the near-wall flow-field dynamics in response to a propagating flame front. Flow-field and flame distributions were measured simultaneously at kHz repetition rates using particle tracking velocimetry (PTV) and planar laser induced fluorescence (PLIF) of sulfur dioxide (SO2). Measurements were performed near the piston surface of an optically accessible engine operating at 800?rpm with homogeneous, stoichiometric isooctane-air mixtures. High-speed measurements reveal a strong interdependency between near-wall flow and flame development which also influences subsequent combustion. A conditional analysis is performed to analyze flame/flow dynamics at the piston surface for cycles with ‘weak’ and ‘strong’ flow velocities parallel to the surface. Faster flame propagation associated with higher velocities before ignition demonstrates a stronger flow acceleration ahead of the flame. Flow acceleration associated with an advancing flame front is a transient feature that strongly influences boundary layer development. The distance from the wall to 75% maximum velocity (δ75) is analyzed to compare boundary layer development between fired and motored datasets. Decreases in δ75 are strongly related to flow acceleration produced by an approaching flame front. Measurements reveal strong deviations of the boundary layer flow between fired and motored datasets, emphasizing the need to consider transient flow behavior when modeling boundary layer physics for reacting flows.  相似文献   

6.
Combustion dynamics leading to thermoacoustic instability in a rearward-facing step stabilized premixed flame is experimentally examined with the objective of investigating the fluid dynamic mechanism that drives heat release rate fluctuations, and how it couples with the acoustic field. The field is probed visually, using linear photodiode arrays that capture the spatiotemporal distribution of CH* and OH*; an equivalence ratio monitor; and a number of pressure sensors. Results show resonance between the acoustic quarter wave mode of the combustion tunnel and a fluid dynamic mode of the wake. Under unstable conditions, the flame is convoluted around a large vortex that extends several step heights downstream. During a typical cycle, while the velocity is decreasing, the vortex grows, and the flame extends downstream around its outer edge. As the velocity reaches its minimum, becoming mostly negative, the vortex reaches its maximum size, and the flame collides with the upper wall; its leading edge folds, trapping reactants pockets, and its trailing edge propagates far upstream of the step. In the next phase, while the velocity is increasing, the heat release grows rapidly as trapped reactant’ pockets are consumed by flames converging towards their centers, and the upstream flame is dislodged back downstream. The heat release rate reaches its maximum halfway into the velocity rise period, leading the maximum velocity by about 90°. In this quarter-wave mode, the pressure leads the velocity by 90° as well, that is, it is in phase with the heat release rate. Numerical modeling results support this mechanism. Equivalence ratio contribution to the instability mechanism is shown to be minor, i.e., heat release dynamics are governed by the cyclical formation of the wake vortex and its interaction with the flame.  相似文献   

7.
Enhancement of flame speed in vortex ring combustion has been investigated experimentally. The flame speed and the maximum tangential velocity for each vortex ring were simultaneously measured with a PIV system and a high speed camera. To vary the extent of the enhancement, methane/hydrogen mixtures were used. Furthermore, rich mixtures were used as a source of vortex ring so that the situation of the experiment and the results could be applied more directly to practical use. Results have confirmed that enhancement of flame speed does occur in vortex ring combustion of rich methane/hydrogen mixtures in air. The extent of the enhancement becomes larger as the hydrogen content is increased. The flame speed reaches about twice as high as the maximum tangential velocity for pure hydrogen. Based on momentum conservation across the flame, a simple equation on the ratio of the flame speed to the maximum tangential velocity has been obtained, which has shown that the flame speed enhancement can be explained successfully by considering the spherically expanding type premixed combustion behind the flame. The pressure rise of a spherically expanding type premixed flame can explain the flame speed enhancement observed in the present rich methane/hydrogen vortex ring combustion.  相似文献   

8.
A premixed propane–air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and destruction in the model afterburner.  相似文献   

9.
Experimental data is presented for the interaction between a propagating flame and a simple vortex flow field structure generated in the wake of solid obstacles. The interaction between gas movement and obstacles creates vortex shedding forming a simple flow field recirculation. The presence of the simple turbulent structure within the gas mixture curls the flame front increasing curvature and enhancing burning rate. A novel twin camera Particle Image Velocimetry, PIV, was employed to characterise the flow field recirculation and the interaction with the flame front. The technique allowed the quantification of the flame/vortex interaction. The twin camera technique provides data to define the spatial variation of both the velocity of the flow field and flame front. Experimentally obtained values of local flame displacement speed and flame stretch rate are presented for simple flame/vortex interactions.  相似文献   

10.
A two-dimensional triple-flame numerical model of a laminar combustion process reflects flame asymmetric structural features that other analytical models do not generate. It reveals the pentasectional character of the triple flame, composed of the central pure diffusion-flame branch and the fuel-rich and fuel-lean branches, each of which is divided into two sections: a near-stoichiometric section and a previously unreported near-flammability-limits section with combined diffusion and premixed character. Results include propagation velocity, fuel and oxidiser mass fractions, temperature and reaction rates. Realistic stoichiometric ratios and reaction orders match experimental planar flame characteristics. Constant density, a one-step reaction, and a mixture fraction gradient at the inlet as the simulation parameter are imposed. The upstream equivalence ratio or the upstream reactant mass fractions are linear or hyperbolic functions of the transverse coordinate. The use here of experimental kinetics data differs from previous analytical works and results in flame asymmetry and different flammability limits. Upstream mixture composition gradient affects propagation velocity, flame curvature, diffusion flame reaction rate, and flammability limits. Flammability limits extend beyond those of a planar flame due to transverse heat and mass diffusion causing the pentasectional character.  相似文献   

11.
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.  相似文献   

12.
A novel experimental technique is proposed to study the detonation propagation in a layer of non-reacted gas weakly confined by combustion products. This problem is relevant to rotating detonation engines, where transverse detonations are confined by products of a previous rotation cycle, and other applications such as industrial safety. The experimental technique utilizes a flame ignited along the top wall in a long channel. The preferential growth of the flame along the long direction of the channel creates a finger flame and permits to create a narrow layer of unburned gas. A detonation ignited outside of this layer then propagates through the layer. This permits to conduct accurate observations of the detonation interaction with the inert gas and determine the boundary condition of the interaction. The present paper provides a proof-of-concept demonstration of the technique in a 3.4 m by 0.2 m channel, in which long finger flames were observed in ethylene-oxygen mixtures. The flame is visualized by high-speed direct luminosity over its entire travel, coupled with pressure measurements. A direct simulation of the flame growth served to supplement the experiments and evaluate the role of the induced flow by the flame growth, which gives rise to a non-uniform velocity distribution along the channel length. Detonation experiments were also performed at various layer heights in order to establish the details of the interaction. The structure was visualized using high speed Schlieren video. It was found that an inert shock always runs ahead of the detonation wave, which gives rise to a unique double shock reflection interaction.  相似文献   

13.
Because ammonia is one of the most promising candidates for energy carrier in the future, various applications of ammonia as a fuel are currently considered. One medium for utilizing ammonia is by introducing it to coal-fired boilers. To the best of our knowledge, this paper is the first to report the fundamental mechanism of the flame propagation phenomenon for pulverized coal/ammonia co-combustion. The effects of the equivalence ratio of the ammonia-oxidizer mixture on the flame propagation velocity of pulverized coal/ammonia co-combustion in turbulent fields were clarified by the experiments employing a unique fan-stirred constant volume chamber. The flame propagation velocities of pulverized coal/ammonia co-combustion, pure ammonia combustion, and pure pulverized coal combustion were compared. As expected, the flame propagation velocity of pulverized coal/ammonia was higher than that of the pure pulverized coal combustion for all conditions. However, the comparison of the flame propagation velocities of pulverized coal/ammonia co-combustion and that of the pure ammonia combustion, revealed that whether the flame propagation of the pulverized coal/ammonia was higher than that of the pure ammonia combustion was dependent on the equivalence ratio of the ammonia-oxidizer. This unique feature was explained by a mechanism including three competing effects proposed by the authors. In the ammonia lean condition, the positive effects, which are the strong radiation from the luminous flame and the increment of local equivalence ratio by the addition of volatile matter, are larger than the negative effect, which is the heat absorption by coal particles in preheat zone. In the ammonia rich condition, the effect of an increment of the local equivalence ratio by the addition of volatile matter turns into a negative effect. Consequently, the negative effects overcome the positive effect in the ammonia rich condition resulting in a lower flame propagation velocity of pulverized coal/ammonia co-combustion.  相似文献   

14.
This study investigates the influence of large-scale flow features, including flow structure and velocity magnitude, on the early-burn period variability in a homogenous-charge spark-ignited engine fueled with premixed propane-air mixture. Particle image velocimetry and in-cylinder pressure measurement data from a previous study - were processed to enable simultaneous flow characterization and flame-front tracking as well as apparent heat-release analysis. By combining probability analysis of flame development with conditional sampling of fast and slow early-burn cycles using 10% fuel mass fraction burned, it is shown that an undesirable flow structure produces an asymmetric flame development at the initial flame growth period. This asymmetric flame structure persists through the whole initial-to-turbulent transition period until the flame becomes fully turbulent. The undesirable flow condition is characterized by large-scale convective flows near spark plug rather than flows that lead to increased flame spread in multiple directions. The simultaneous flow and flame characterization enables the quantifications of flame-front propagation speed, unburned fuel-air mixture velocity ahead of flame front and local burning velocity at flame surface. Here the local burning velocity is referred to as laminar or turbulent flame speed. A simplified approach is introduced to derive integrated values for these quantities per crank-angle-degree, enabling the quantitative comparison of the trend-wise difference in these integrated metrics between fast and slow early-burn cycles. It is revealed that for the transition period, the CCV in the velocity magnitude of unburned fuel-air mixture ahead of the flame front accounts for nearly 50% to the variability of flame propagation speed. The burning velocity provides the remaining source of the flame propagation variability in this period. The flame propagation variations in the initial flame growth and fully turbulent periods are smaller than those in the transition period and are primarily dependent on the variability of large-scale flow features.  相似文献   

15.
In this paper the propagation of combustion waves in solid composite energetic material consisting of fuel and highly thermal conductive inert elements is investigated using a one-dimensional model with a single step reaction mechanism. The analysis is focused on the study of the effect of the geometrical configuration of the composite material on flame speed and dynamics. Spatial averaging over directions transverse to the propagation direction is performed in such a way as to retain the multidimensional nature of the problem. It is shown that the regimes of combustion depend on the geometry of the composite. The largest possible flame speed enhancement is attained in cases when the heat fluxes along the structural elements are not disrupted. For each configuration selected, there exists an optimal choice of the geometric parameters that maximizes the flame velocity.  相似文献   

16.
17.
Thermodynamic calculations show that some metals can react with sulfur without the formation of gaseous products at normal pressure and yet demonstrate sufficiently high flame temperatures to support the propagation of stable flames. For example, a stoichiometric ternary mixture of iron, manganese, and sulfur demonstrates gasless combustion at an equimolar concentration of iron and of manganese with an adiabatic flame temperature of about 2000 °C. Differential thermal analysis of the mixture shows no exothermic reactions below 280 °C. Therefore, sulfur in the mixture can be safely melted (m.p. 119 °C), converting a powder blend into a liquid suspension that is free from gas bubbles. Symmetrical cylindrical flames in shallow pools of suspensions of Fe and Mn powders in liquid sulfur and combustion of the same liquid mixtures in preheated narrow steel tubes have been studied to determine flame propagation speeds as a function of mixture composition. It was found that, contrary to the behavior of the calculated flame temperature, flame speed decreases with the increase of the manganese content in the mixture and is not affected by mixture dilution with the combustion product. Direct measurements of the flame temperatures by thermocouples indicated a weak dependence of the peak flame temperature on mixture composition and revealed a two-stage flame structure. The existence of the two distinct reaction zones in the mixture of two reactive metals with sulfur is in accordance with qualitative theoretical predictions by the theory of flame with parallel reactions existing in the literature. According to theory, the reaction with the higher flame speed in a corresponding binary single-metal–sulfur mixture will form the leading stage of the complex flame front and will govern the flame propagation speed in the ternary composition. The speed of flame propagation in pure Fe–S mixture is almost three times higher than the flame speed in Mn–S mixture. As a result, the iron–sulfur reaction dominates the flame propagation mechanism in Fe–Mn–S suspension.  相似文献   

18.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

19.
Regularities in the mutual variation of the velocity of propagation and electrical conductivity of a flame are investigated experimentally for turbulent combustion in a closed volume. An estimate proposed as a result of analysis of experimental data describes analytically the dependence of the velocity of propagation of the flame on the signal amplitude at ionization probes. In our opinion, the singularity observed on the approximate curve describing the dependence of the flame propagation velocity on the signal amplitude at ionization probes is responsible for the competition between generation and destruction of charged particles in the flame and corresponds to the conditions of quasi-stationary concentrations. The proposed method and established experimental facts can be used in the development of methods for diagnosing local intensity of burning in combustion chambers.  相似文献   

20.
Experimental evidence seems to indicate that the life of a laminar spherical flame front propagating through a fresh mixture of air and liquid fuel droplets can be roughly split into three stages: (1) ignition, (2) radial propagation with a smooth flame front and (3) propagation with flame front cellularization and/or pulsation. In this work, the second stage is analysed using the slowly varying flame approach, for a fuel rich flame. The droplets are presumed to vaporize in a sharp front ahead of the reaction front. Evolution equations for the flame and evaporation fronts are derived. For the former the combined effect of heat loss due to droplet vaporization and radiation plays a dominant explicit role. In addition, the structure of the evaporation front is deduced using asymptotics based on a large parameter associated with spray vaporization. Numerical calculations based on the analysis point to the way in which the spray modifies conditions for flame front extinction. Within the framework of the present simplified model the main relevant parameters turn out to be the initial liquid fuel load in the fresh mixture and/or the latent heat of vaporization of the fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号