首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work shows an in-depth analysis about the role of mixing models on the simulation of MILD combustion using a finite-rate combustion model, the Partially Stirred Reactor approach (PaSR). Different approaches of increasing complexity are compared: a simple model based on a fraction of the integral time scale, a fractal-based mixing model and a dynamic mixing model based on the resolution of transport equations for scalar variance and dissipation rate. The approach is validated using detailed experimental data from flames stabilized on the Adelaide Jet-in-Hot Co-flow (JHC) burner at different fuel-jet Reynolds numbers (5k, 10k and 20k) and different co-flow oxygen dilution levels (3%, 6% and 9%). The results indicate the major role of mixing models to correctly handle turbulence/chemistry interactions and clearly indicate the superior performances of the dynamic mixing model over the other tested approaches.  相似文献   

2.
Transported probability density function (TPDF) simulation with sensitivity analysis has been conducted for turbulent non-premixed CH4/H2 flames of the jet-into-hot-coflow (JHC) burner, which is a typical model to emulate moderate or intense low oxygen dilution combustion (MILD). Specifically, two cases with different levels of oxygen in the coflow stream, namely HM1 and HM3, are simulated to reveal the differences between MILD and hot-temperature combustion. The TPDF simulation well predicts the temperature and species distributions including those of OH, CO and NO for both cases with a 25-species mechanism. The reduced reaction activity in HM1 as reflected in the peak OH concentration is well correlated to the reduced oxygen in the coflow stream. The particle-level local sensitivities with respect to mixing and chemical reaction further show dramatic differences in the flame characteristics. HM1 is less sensitive to mixing and reaction parameters than HM3 due to the suppressed combustion process. Specifically, for HM1 the sensitivities to mixing and chemical reactions have comparable magnitude, indicating that the combustion progress is controlled by both mixing and reaction in MILD combustion. For HM3, there is however a change in the combustion mode: during the flame initialization, the combustion progress is more sensitive to chemical reactions, indicating that finite-rate chemistry is the controlling process during the autoignition process for flame stabilization; at further downstream where the flame has established, the combustion progress is controlled by mixing, which is characteristic of nonpremixed flames. An examination of the particles with the largest sensitivities reveals the difference in the controlling mixtures for flame stabilization, namely, the stoichiometric mixtures are important for HM1, whereas, fuel-lean mixtures are controlling for HM3. The study demonstrates the potential of TPDF simulations with sensitivity analysis to investigate the effects of finite-rate chemistry on the flame characteristics and emissions, and reveal the controlling physio-chemical processes in MILD combustion.  相似文献   

3.
汪小卫  蔡国飙  金平 《中国物理 B》2010,19(1):19401-019401
The scaling of the flowfield in a gas--gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas--gas combustion flowfield, formulation analysis of the three-dimensional (3D) Navier--Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas--gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas--gas combustion chamber can be changed. Based on the criterion, multi-element injector chambers with different geometric sizes and at different chamber pressures ranging from 3~MPa to 20~MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64~MPa to 3.68~MPa. Wall temperature measurements are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied.  相似文献   

4.
An adjoint-based approach for the sensitivity analysis of complex reaction mechanisms is presented. It builds purely on the evaluation of the governing equations. No adjoint equations have to be derived explicitly. Instead, the required adjoint operator is constructed numerically. The approach can be utilised for various kinetic models and in existing codes with minimal implementation effort. All dependencies on the state and on model parameters are fully evaluated without simplifications. Sensitivities are calculated more efficiently and more robustly compared with the often-used brute-force method. The approach is demonstrated for a homogeneous (zero-dimensional) reactor with different complex reaction mechanisms including several reaction types.  相似文献   

5.
吴钦宽 《物理学报》2008,57(5):2654-2657
研究了一类非线性燃烧模型.利用同伦分析方法,得到了该模型的近似解. 关键词: 非线性方程 燃烧模型 同伦分析法 近似解  相似文献   

6.
A predictive simulation of the autoignition process of non-premixed methane in a turbulent jet configuration was performed. Closure for the chemical source-term was obtained using Conditional Source-term Estimation with Laminar Flamelet Decomposition (CSE-LFD). The ambient oxidizer conditions – the high pressure and moderate temperatures characteristic of compression ignition engines – were chosen with the intent to validate the combustion model used under engine-relevant conditions. Validation was obtained by comparison of the predicted ignition delay to experimental results obtained from a shock-tube facility at several initial temperatures. Overall, the combination of full chemistry that has been carefully tuned to predict autoignition of premixed methane–air mixtures under similar temperature/pressure conditions with the CSE-LFD model is able to successfully predict the autoignition delay time of methane–air jets well within the scatter in the experimental data.  相似文献   

7.
林颖璐  闫振纲  杨娟  王春勇  卞保民 《物理学报》2012,61(10):100505-100505
应用高速数据采集卡,记录悬浮颗粒计数光电传感器本底噪声信号序列值,研究噪声信号独立特征量, 如信号幅度极值、上升沿幅值、下降沿幅值、极值时序间隔,以及特征量乘积值等统计分布规律. 结果表明,上述独立特征量均能够与以自然数l为自变量的对数正态分布函数高度符合, 噪声信号特征量统计分布呈现出高度相似特征.基于这种统计相似性,还可推出噪声信号不同特征量对应的统计自变量之间的幂函数变换关系.噪声信号特征量统计分布函数相似性可理解为噪声信号集合统计分形特性的一种表现.  相似文献   

8.
地表热通量和水汽通量对全球气候变化和大气环流有着重要而广泛的影响,而Monin-Obukhov(M-O)相似性函数在计算近地层热通量和水汽通量的过程中扮演着重要的角色;同时M-O相似性函数是大气光学湍流估算模式中不可或缺的因子。通过对合肥西郊35 m铁塔上气象数据的分析,利用非线性最小二乘法拟合得到了一套全新的M-O相似性函数。将之与前人提出的相似性函数作对比,展现出了较好的一致性。同时,该函数大气光学湍流的估算模式中,估算值与实测值具有较好的吻合度。分析结果表明:在稳定条件和非常不稳定条件下,可以认为温度相似性函数等于湿度相似性函数,在弱不稳定条件下两者不再满足这种相似性。  相似文献   

9.
Although 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are very similar molecularly and their burning rates as a function of pressure are nearly identical, it is well known that they differ significantly in temperature sensitivity, especially at low pressures. To understand these differences better, three simple models were applied to HMX and RDX combustion. Both the Denison–Baum–Williams and Li–Williams–Margolis models have previously been calibrated for use with RDX. However, the RDX calibration of the Ward–Son–Brewster model was developed in the present work. All three models were compared with relevant measured data including: burning rate, flame stand-off/thickness, combustion stability, and temperature sensitivity. It was shown that all models are capable of accurately determining the burning rate of HMX and RDX as a function of pressure at the baseline initial temperature, but only two of the models are capable of capturing the variation in temperature sensitivity for both HMX and RDX, and only one model can replicate all the other measured characteristics within experimental uncertainty. Analysis using this model suggests that the surface reaction of RDX is much less exothermic than HMX and that there is a shifting between the gas phase and surface reaction dominance with pressure for HMX. This explains why the temperature sensitivity for RDX is nearly flat for low pressures while the temperature sensitivity for HMX increases significantly as the pressure decreases. Importantly, these trends are achieved without adding significant model complexity or having parameters change with pressure or initial temperature.  相似文献   

10.
11.
The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.  相似文献   

12.
13.
Arterial-spin-labeling (ASL) magnetic resonance imaging (MRI) provides a noninvasive tool to measure cerebral blood flow (CBF) and is increasingly used as a surrogate for baseline neural activity. However, the power of ASL MRI in detecting CBF differences between patient and control subjects is hampered by inter-subject variations in global CBF, which are associated with non-neural factors and may contribute to the noise in the across-group comparison. Here, we investigated the sensitivity of this technique and proposed a normalization strategy to better detect such a difference. A “model” situation was employed in which two visual stimuli (i.e. cross fixation and flashing checkerboard) were presented to two groups of subjects to mimic “control” and “patient” groups (N=7 for each group), respectively. It was found that absolute CBF (aCBF) in the occipital lobe in the checkerboard group was 26.0% greater compared to the fixation group, but the level of significance was modest (P=.03). In contrast, when normalizing the CBF with whole-brain CBF or CBF in a reference region [termed relative CBF (rCBF)], the statistical significance was improved considerably (P<.003). For voxel-based analysis, the rCBF indices correctly detected CBF differences in the occipital lobe in the across-group comparison, while aCBF failed to detect any significant cluster using the same statistical threshold. We also performed Monte Carlo simulation to confirm the experimental findings and found that the power improvement was most pronounced when signal-to-noise-ratio is moderate and the underlying CBF difference was small. The simulation also showed that, with the proposed normalization, a detection power of 80% can be achieved using a sample size of about 20. In summary, rCBF is a more sensitive index to detect small differences in CBF, rather than the much-sought-after aCBF, since it reduces data noise caused by inter-subject variations in global CBF.  相似文献   

14.
The sensitivity of current-to-voltage is treated by defining an adequate parameter useful for a wide variety of cases within the context of ballistic electron transport. This parameter may be conceived as a normalized conductance which is studied in relation to electronic density of states.  相似文献   

15.
Highly ordered pyrolytic graphite was exposed to radio-frequency methane plasma to produce a hydrogen-terminated carbon surface. The effects of treatment parameters, namely exposure time, applied power and methane pressure, upon the treated surfaces’ chemical and morphological properties were systematically investigated. Scanning tunnelling microscopy measurements showed growth features on the plasma treated surface, the coverage of which was shown to increase with plasma exposure time or applied plasma power and decrease with gas pressure. Analyses of post-treated surface structures (via static secondary ion mass spectrometry with the aid of principle component analysis) showed an increase in surface hydrogen with plasma exposure time, applied plasma power and decreasing gas pressure. The results of these analyses were further supported by elastic recoil detection analysis measurements, which showed similar trends for the experimental parameters on the resultant surface hydrogen content.  相似文献   

16.
On the base of the “expanded local mode approach” (see, Ref. [12]) a simple expression of the ambiguity parameter sinγ of the CH4 molecule is estimated and then, using empirical relations between Fij force coefficients, simple relations between different spectroscopic parameters of the methane molecule are derived. Comparison with corresponding “experimental” values is made, that shows more than satisfactory correlations between both (predicted and obtained from experimental data) sets of parameters.  相似文献   

17.
Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux–Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot–Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.  相似文献   

18.

The inner structure, and the physical behaviour of turbulent premixed flames are usually described, and classified by means of the regime diagram introduced by Borghi and Peters. Thereby properties related to both the flame and the (turbulent) flow are considered. In this work a diagram valid for all physical regimes, comprising suitable requirements for laminar simulations, direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaging based numerical simulation (RANS) is proposed. In particular the diagram describes essential situations within the validity limits of the “Borghi, Peters diagram” which physical phenomena are resolved by the simulation, and which have to be modelled. This information is used for systematic classification of various models by suggesting specific models that are appropriate depending on the regime and numerical resolution, and may provide guidance for numerical simulation methods and model development in turbulent premixed combustion. This might help users as a guideline in choosing appropriate models for a given device, and numerical effort available. The regime diagram suggested by Pitsch and Duchamp de Lageneste, which includes DNS and LES by explicitely accounting for the numerical related variable filterwidth, emerges here as one of the special two-dimensional cases possible. In contrast to the generalized regime diagram, their diagram does not include laminar simulations, and RANS based considerations, while transition between wrinkled and corrugated flamelets is not clearly established.  相似文献   

19.
S.A. Taya  H.M. Khalil 《Optik》2009,120(10):504-508
We show analytically that the sensitivity of an optical waveguide sensor can be dramatically enhanced by using a metamaterial with negative permittivity and permeability. The variation of the sensitivity of the proposed waveguide sensor with different parameters of the waveguide is studied. It is found that the sensitivity of the sensor increases with the increasing thickness of the metamaterial due to the surface polariton generation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号