首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

2.
由于遥感图像存在边缘混叠等问题,经典的C-V模型会产生大量的冗余轮廓,而且无法分割多个同质区域的目标.为此,提出了基于C-V模型的窄带多区域水平集图像分割方法,采用N-1个水平集函数将图像分割成N(N>1)个区域,每个水平集函数表达一个区域.该方法一方面通过建立独立多区域水平集模型可以消除多余的轮廓,避免分割区域的重叠...  相似文献   

3.
A new model for simulating contact line dynamics is proposed. We apply the idea of driving contact-line movement by enforcing the equilibrium contact angle at the boundary, to the conservative level set method for incompressible two-phase flow [E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225–246]. A modified reinitialization procedure provides a diffusive mechanism for contact-line movement, and results in a smooth transition of the interface near the contact line without explicit reconstruction of the interface. We are able to capture contact-line movement without loosing the conservation. Numerical simulations of capillary dominated flows in two space dimensions demonstrate that the model is able to capture contact line dynamics qualitatively correct.  相似文献   

4.
Continuous efforts have been made to process degraded iris images for enhancement of the iris recognition performance in unconstrained situations. Recently, many researchers have focused on developing the iris segmentation techniques, which can deal with iris images in a non-cooperative environment where the probability of acquiring unideal iris images is very high due to gaze deviation, noise, blurring, and occlusion by eyelashes, eyelids, glasses, and hair. Although there have been many iris segmentation methods, most focus primarily on the accurate detection of iris images captured in a closely controlled environment. The novelty of this research effort is that we propose to apply a variational level set-based curve evolution scheme that uses a significantly larger time step to numerically solve the evolution partial differential equation (PDE) for segmentation of an unideal iris image accurately, and thereby, speeding up the curve evolution process drastically. The iris boundary represented by the variational level set may break and merge naturally during evolution, and thus, the topological changes are handled automatically. The proposed variational model is also robust against poor localization and weak iris/sclera boundaries. In order to solve the size irregularities occurring due to arbitrary shapes of the extracted iris/pupil regions, a simple method is applied based on connection of adjacent contour points. Furthermore, to reduce the noise effect, we apply a pixel-wise adaptive 2D Wiener filter. The verification and identification performance of the proposed scheme is validated on three challenging iris image datasets, namely, the ICE 2005, the WVU Unideal, and the UBIRIS Version 1.  相似文献   

5.
A tensor diffusion level set method is presented to extract infrared (IR) targets contour under a sky-mountain-water complex background. The proposed model combines tensor diffusion operator and the eigenvalues of tensor-image into a common energy minimization level set framework. By incorporating the information of image tensor diffusion operator into the external energy term, the level set function can move in a specific way. And eigenvalues of tensor-image are used for the regularization of zero level curves in order to diminish the influence of image ‘clutter’ and noise. An additional benefit of the proposed method is robust to initial conditions. Experimental results show very good performance of the tensor diffusion level set method for IR targets contours extraction.  相似文献   

6.
We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary conditions applied along the boundaries of the detonating explosive. Our method solves for the full level-set function field, φ(x, y, t), that locates the detonation shock with a modified level-set function PDE that continuously renormalises the level-set function to a distance function based off of the locus of the shock surface, φ(x, y, t)=0. The boundary conditions are applied with ghost nodes that are sorted according to their connectivity to the interior explosive nodes. This allows the boundary conditions to be applied via a local, direct evaluation procedure. We give an extension of this boundary condition application method to three dimensions. Our parallel algorithm is based on a domain-decomposition model which uses the Message-Passing Interface (MPI) paradigm. The computational order of the full level-set algorithm, which is O(N 4), where N is the number of grid points along a coordinate line, makes an MPI-based algorithm an attractive alternative. This parallel model partitions the overall explosive domain into smaller sub-domains which in turn get mapped onto processors that are topologically arranged into a two-dimensional rectangular grid. A comparison of our numerical solution with an exact solution to the problem of a detonation rate stick shows that our numerical solution converges at better than first-order accuracy as measured by an L1-norm. This represents an improvement over the convergence properties of narrow-band level-set function solvers, whose convergence is limited to a floor set by the width of the narrow band. The efficiency of the narrow-band method is recovered by using our parallel model.  相似文献   

7.
We propose a novel multi-phase level set algorithm for solving the inverse problem of bioluminescence tomography. The distribution of unknown interior source is considered as piecewise constant and represented by using multiple level set functions. The localization of interior bioluminescence source is implemented by tracing the evolution of level set function. An alternate search scheme is incorporated to ensure the global optimal of reconstruction. Both numerical and physical experiments are performed to evaluate the developed level set reconstruction method. Reconstruction results show that the proposed method can stably resolve the interior source of bioluminescence tomography.  相似文献   

8.
The Large Eddy Simulation (LES) / Conditional Moment Closure (CMC) model with detailed chemistry is used for modelling spark ignition and flame propagation in a turbulent methane jet in ambient air. Two centerline and one off-axis ignition locations are simulated. We focus on predicting the flame kernel formation, flame edge propagation and stabilization. The current LES/CMC computations capture the three stages reasonably well compared to available experimental data. Regarding the formation of flame kernel, it is found that the convection dominates the propagation of its downstream edge. The simulated initial downstream and radial flame propagation compare well with OH-PLIF images from the experiment. Additionally, when the spark is deposited at off-centerline locations, the flame first propagates downstream and then back upstream from the other side of the stoichiometric iso-surface. At the leading edge location, the chemical source term is larger than others in magnitude, indicating its role in the flame propagation. The time evolution of flame edge position and the final lift-off height are compared with measurements and generally good agreement is observed. The conditional quantities at the stabilization point reflect a balance between chemistry and micro-mixing. This investigation, which focused on model validation for various stages of spark ignition of a turbulent lifted jet flame through comparison with measurements, demonstrates that turbulent edge flame propagation in non-premixed systems can be reasonably well captured by LES/CMC.  相似文献   

9.
马竟锋  侯凯  包尚联  陈纯 《中国物理 B》2011,20(2):28701-028701
In this paper we first determine three phases of cell images:background,cytoplasm and nucleolus according to the general physical characteristics of cell images,and then develop a variational model,based on these characteristics,to segment nucleolus and cytoplasm from their relatively complicated backgrounds.In the meantime,the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model,which can speed up the segmentation and present satisfactory results in cell image processing.  相似文献   

10.
This paper presents a formulation for free-surface computations capable of handling complex phenomena, such as wave breaking, without excessive mass loss or smearing of the interface. The formulation is suitable for discretizations using finite elements of any topology and order, or other approaches such as isogeometric and finite volume methods. Furthermore, the approach builds on standard level set tools and can therefore be used to augment existing implementations of level set methods with discrete conservation properties. Implementations of the method are tested on several difficult two- and three-dimensional problems, including two incompressible air/water flow problems with available experimental results. Linear and quadratic approximations on unstructured tetrahedral and trilinear approximations on hexahedral meshes were tested. Global conservation and agreement with experiments as well as computations by other researchers are obtained.  相似文献   

11.
12.
徐东  彭真明 《强激光与粒子束》2012,24(12):2817-2821
针对水平集方法计算复杂度高,无法满足实时系统要求的缺陷,提出一种改进的快速水平集算法。该算法对快速水平集算法进行简化,采用单链表表示轮廓曲线。利用C-V模型的二值拟合项来设计曲线演化的速度函数,保留了C-V模型的全局优化特性。还给出了一个基于单链表中轮廓点个数变化的水平集演化终止准则。该算法不仅明显提高了分割速度,且对噪声图像也能实现高效的分割。  相似文献   

13.
A computational fluid dynamics (CFD) tool for performing turbulent combustion simulations that require finite-rate chemistry is developed and tested by modelling a series of bluff-body stabilized flames that exhibit different levels of finite-rate chemistry effects ranging from near equilibrium to near global extinction. The new modelling tool is based on the multi-environment probability density function (MEPDF) methodology and combines the following: the direct quadrature method of moments (DQMOM); the interaction-by-exchange-with-the-mean (IEM) mixing model; and realistic combustion chemistry. Using DQMOM, the MEPDF model can be derived from the transport PDF equation by depicting the joint composition PDF as a weighted summation of a finite number of multi-dimensional Dirac delta functions in the composition space. The MEPDF method with multiple reactive scalars retains the unique property of the joint PDF method of treating chemical reactions exactly. However, unlike the joint PDF methods that typically must resort to particle-based Monte-Carlo solution schemes, the MEPDF equations (i.e. the transport equations of the weighted delta-peaks) can be solved by traditional Eulerian grid-based techniques. In the current study, a pseudo time-splitting scheme is adopted to solve the MEPDF equations; the reaction source terms are computed with a highly efficient and accurate in-situ adaptive tabulation (ISAT) algorithm. A 19-species reduced mechanism based on quasi-steady state assumptions is used in the simulations of the bluff-body flames. The modelling results are compared with the experimental data, including mixing, temperature, major species and important minor species such as CO and NO. Compared with simulations using a Monte-Carlo joint PDF method, the new approach shows comparable accuracy.  相似文献   

14.
We apply the piecewise constant level set method to a class of eigenvalue related two-phase shape optimization problems. Based on the augmented Lagrangian method and the Lagrange multiplier approach, we propose three effective variational methods for the constrained optimization problem. The corresponding gradient-type algorithms are detailed. The first Uzawa-type algorithm having applied to shape optimization in the literature is proven to be effective for our model, but it lacks stability and accuracy in satisfying the geometry constraint during the iteration. The two other novel algorithms we propose can overcome this limitation and satisfy the geometry constraint very accurately at each iteration. Moreover, they are both highly initial independent and more robust than the first algorithm. Without penalty parameters, the last projection Lagrangian algorithm has less severe restriction on the time step than the first two algorithms. Numerical results for various instances are presented and compared with those obtained by level set methods. The comparisons show effectiveness, efficiency and robustness of our methods. We expect our promising algorithms to be applied to other shape optimization and multiphase problems.  相似文献   

15.
《Optik》2014,125(9):2199-2204
The paper presents an improved local region-based active contour model for image segmentation, which is robust to noise. A data fitting energy functional is defined in terms of curves and the energy terms which are based on the differences between the local average intensity and the global intensity means. Then the energy is incorporated into a level set variational formulation, from which a curve evolution equation is derived for energy minimization. And then the level set function is regularized by Gaussian filter to keep smooth and eliminate the re-initialization. By using the local statistical information, the proposed model can handle with noisy images. The proposed model is first presented as a two-phase level set formulation and then extended to a multi-phase one. Experimental results show desirable performances of the proposed model for both noisy synthetic and real images, especially with high level noise.  相似文献   

16.
To simulate flows around solid obstacles of complex geometries, various immersed boundary methods had been developed. Their main advantage is the efficient implementation for stationary or moving solid boundaries of arbitrary complexity on fixed non-body conformal Cartesian grids. The Brinkman penalization method was proposed for incompressible viscous flows by penalizing the momentum equations. Its main idea is to model solid obstacles as porous media with porosity, , and viscous permeability approaching zero. It has the pronounced advantages of mathematical proof of error bound, strong convergence, and ease of numerical implementation with the volume penalization technique. In this paper, it is extended to compressible flows. The straightforward extension of penalizing momentum and energy equations using Brinkman penalization with respective normalized viscous, η, and thermal, ηT, permeabilities produces unsatisfactory results, mostly due to nonphysical wave transmissions into obstacles, resulting in considerable energy and mass losses in reflected waves. The objective of this paper is to extend the Brinkman penalization technique to compressible flows based on a physically sound mathematical model for compressible flows through porous media. In addition to penalizing momentum and energy equations, the continuity equation for porous media is considered inside obstacles. In this model, the penalized porous region acts as a high impedance medium, resulting in negligible wave transmissions. The asymptotic analysis reveals that the proposed Brinkman penalization technique results in the amplitude and phase errors of order O((η)1/2) and O((η/ηT)1/43/4), when the boundary layer within the porous media is respectively resolved or unresolved. The proposed method is tested using 1- and 2-D benchmark problems. The results of direct numerical simulation are in excellent agreement with the analytical solutions. The numerical simulations verify the accuracy and convergence rates.  相似文献   

17.
In this paper, we present the development of a sharp numerical scheme for multiphase electrohydrodynamic (EHD) flows for a high electric Reynolds number regime. The electric potential Poisson equation contains EHD interface boundary conditions, which are implemented using the ghost fluid method (GFM). The GFM is also used to solve the pressure Poisson equation. The methods detailed here are integrated with state-of-the-art interface transport techniques and coupled to a robust, high order fully conservative finite difference Navier–Stokes solver. Test cases with exact or approximate analytic solutions are used to assess the robustness and accuracy of the EHD numerical scheme. The method is then applied to simulate a charged liquid kerosene jet.  相似文献   

18.
A new numerical method to model the dynamic behavior of lipid vesicles under general flows is presented. A gradient-augmented level set method is used to model the membrane motion. To enforce the volume- and surface-incompressibility constraints a four-step projection method is developed to integrate the full Navier–Stokes equations. This scheme is implemented on an adaptive non-graded Cartesian grid. Convergence results are presented, along with sample two-dimensional results of vesicles under various flow conditions.  相似文献   

19.
In the present paper, an Eulerian scheme combined with the hybrid particle level set method for numerical simulation of spall fracture due to high-velocity impact is proposed. An axisymmetric framework is established, based on an improved CE/SE scheme, to solve the high-velocity impact problems with large deformations, high strain rates and spall fractures. The hybrid particle level set method is adopted for tracking material interfaces and describing the formation and propagation of a crack. A novel representation of crack by level set is proposed. Numerical simulations are carried out and compared to the corresponding experimental results. The numerical results are in good agreement with the experimental data. The edge effects are reproduced and the decrease of scab thickness with increase in impact velocity is observed owing to the numerical analysis. It is proved that our computational technique is feasible and reliable for analyzing the spall fracture.  相似文献   

20.
A complex variable meshless method for fracture problems   总被引:4,自引:0,他引:4  
1 Introduction The meshless (or meshfree) method has been a hot topic and the development trend of numerical methods for many science and engineering problems in recent years. Comparing with the conventional numerical methods, such as the finite element method and the boundary element method, the meshless method is an approximation based on nodes, and does not form a mesh to determine the shape function in the domain, in which a problem is to be solved. The meshless method has some advantages …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号