首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 2 毫秒
1.
A hybrid two-phase numerical methodology is used to investigate the flow-field subsequent to the detonation of a spherical charge of TNT with an ambient distribution of a dilute cloud of aluminum particles. The interaction of the particle cloud with the contact surface results in Rayleigh–Taylor instability, which grows in time and gives rise to a mixing layer where the detonation products mix with the air and afterburn. At early times, the ambient particles get engulfed into the detonation products and ignite. Subsequently, they catch up with the Rayleigh–Taylor structures, and the vortex rings around the hydrodynamic structures cause transverse dispersion that results in the clustering of particles. Then, the particles leave the mixing layer and quench, yet preserve their hydrodynamic foot print. Preferential heating and combustion of particles occurs due to clustering. A higher initial mass loading in the ambient cloud results in larger clusters due to stronger/larger vortex rings around the hydrodynamic structures. A larger particle size results in the formation of fewer and degenerate clusters when the initial width of the cloud is larger. A theoretical model is used to predict the bubble amplitudes, and are in good accordance with the simulation results. Overall, this study has provided some useful insights on the explosive dispersal of dilute aluminum particle clouds and the gas dynamics of the flow field in the mixing layer.  相似文献   

2.
DNS is performed to analyse the effects of Lewis number (Le), density ratio and gravity in stagnating turbulent premixed flames. The results show good agreement with those of Lee and Huh (Combustion and Flame, Vol. 159, 2012, pp. 1576–1591) with respect to the turbulent burning velocity, ST, in terms of turbulent diffusivity, flamelet thickness, mean curvature and displacement speed at the leading edge. In all four stagnating flames studied, a mean tangential strain rate resulting in a mean flamelet thickness smaller than the unstretched laminar flame thickness leads to an increase in ST. A flame cusp of positive curvature involves a superadiabatic burned gas temperature due to diffusive–thermal instability for an Le less than unity. Wrinkling tends to be suppressed at a larger density ratio, not enhanced by hydrodynamic instability, in the stagnating flow configuration. Turbulence is produced, resulting in highly anisotropic turbulence with heavier unburned gas accelerating through a flame brush by Rayleigh–Taylor instability. Results are also provided on brush thickness, flame surface density and conditional velocities in burned and unburned gas and on flame surfaces to represent the internal brush structures for all four test flames.  相似文献   

3.
High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh–Taylor mixing layer is performed using the 10th-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analysed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity. It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier–Stokes models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.  相似文献   

4.
A new approach to generate initial conditions for RANS simulations of Rayleigh–Taylor (RT) turbulence is presented. The strategy is to provide profiles of turbulent model variables when it is suitable for the turbulence model to be started, and then use these profiles for the turbulence model initialization. The generation of turbulence model variable profiles is achieved with a two-step process. In the first step, a nonlinear modal model assuming small amplitude initial perturbations, incompressible and inviscid fluids is used to track the growth of modes that exist in a given initial perturbation spectrum, and also modes generated by mode interactions. The amplitude development of each mode represents the penetration distance of the light fluid into the heavy fluid (bubble penetration), for a given mode perturbation. The penetration distance of heavy fluid into the light fluid (spike penetration), for a given mode perturbation, is inferred from the bubble's height by an empirical relation valid for small initial amplitudes, and established by DNS simulations that depend on a nondimensional time, and the density contrast (Atwood number). It is hypothesized that the bubble front position of the RT mixing layer can be approximated by the largest penetration distance among all existing modes. The spike front position is approximated in the same fashion. The nonlinear model is evaluated by comparing the bubble front height evolution predicted by the model against the bubble front height predicted by an incompressible implicit large eddy simulations (ILES) code. Comparisons of results for “top-hat” and two-band initial perturbation spectra at Atwood numbers, AT =0.3 and AT =0.5 for the former, and AT =0.01 and AT =0.5 for the latter, show reasonable agreement. In the second step, the bubble and spike front positions, their derived velocities, and simplified profiles of the mixture fraction distribution of each fluid between the bubble and spike fronts are used with a two-fluid approximation to derive profiles for the turbulence model variables. When initialized with modal model profiles at start time τ0, (i.e., the time when the turbulence model variable profiles are inferred from the modal model results), the RANS simulations provide at all times τ>τ0 profiles that show good agreement with ILES simulations. The procedure for determining the time at which the RANS model should be started is a representative use, other parameters can be used depending on the application. In this paper, for the purpose of demonstration of the full strategy, τ0 is taken as the time at which the mixing layer growth rate parameter α has reached its asymptotic value in the corresponding ILES simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号