首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
Results of measurements of critical conditions for extinction and of temperature profiles in counterflow diffusion flames are reported. The fuel was a hydrogen–nitrogen mixture with 14 mole percent hydrogen, and the oxidizer was air. Pressures ranged from 0.1 MPa to 1.5 MPa; measurements were made in a facility especially constructed for carrying out counterflow combustion experiments at high pressures. With increasing pressure, the strain rate at extinction first increases and then decreases, in qualitative agreement with predictions, but there are observable quantitative differences. Temperature profiles, obtained employing an R-type thermocouple at a fixed strain rate of 100/s, agree well with predictions, within experimental uncertainty. The results may help to improve knowledge of underlying chemical-kinetic and transport parameters at elevated pressures.  相似文献   

2.
3.
A Burke–Schumann (flame-sheet) formulation is developed for diffusion flames between a fuel and oxidiser with Lewis numbers of unity, subject to addition to the fuel and/or oxidiser stream of a different reactant for which the Lewis number differs from unity. This formulation is applied to laminar counterflow diffusion-flame experiments, reported here, in which hydrogen was added to either methane–nitrogen mixtures or oxygen–nitrogen mixtures at normal atmospheric pressure, with both feed streams at normal room temperature. Experimental conditions were adjusted to fix selected values of the stoichiometric mixture fraction and the adiabatic flame temperature, and the strain rate was increased gradually, maintaining the momentum balance of the two streams, until extinction occurred. At the selected sets of values, the strain rate at extinction was measured as a function of the hydrogen concentration in the fuel or oxidiser stream. The ratio of the fraction of the oxidiser flux that consumes hydrogen to the fraction that consumes fuel was calculated from the new Burke–Schumann formulation, and it was found that, within experimental uncertainty, the ratio of the extinction strain rate with hydrogen addition to that without was the same at any given value of this oxygen flux ratio, irrespective of whether the hydrogen was added on the fuel or oxidiser side. This experimental result was also in close agreement with computational predictions employing detailed chemistry. These results imply that differences in detailed hydrogen concentration profiles within the reaction zone have little or no influence on the chemical kinetics of extinction when the stoichiometric mixture fraction, the adiabatic flame temperature, and the proportion of oxygen that consumes the added fuel are fixed. This same correspondence may be expected to apply for other fuels and additives.  相似文献   

4.
The oxidation characteristics of C2 hydrocarbons were revisited in flames established in the counterflow configuration. Laminar flame speeds of ethane/air, ethylene/air, and acetylene/oxygen/nitrogen mixtures as well as extinction strain rates of non-premixed ethane/air flames were measured using digital particle image velocimetry. The experiments were modeled using three different kinetic models. While the experimental and computed laminar flame speeds agreed closely for all C2 hydrocarbons under fuel-lean conditions, notable discrepancies were identified under fuel-rich conditions. Using the computed flame structures, insight was provided into the controlling mechanisms that could be responsible for the observed discrepancies. More specifically, the uncertainties associated with the kinetics of the thermal decomposition of the ethyl radical were found to be a potential source of the observed discrepancies for ethane flames. It was shown also by using alternative rate constants for the ethyl radical decomposition, the rate of flame propagation and the extinction propensity are affected notably. Furthermore, the values of the branching ratio of acetylene consumption reactions involving atomic oxygen were found to have a significant effect on the propagation of rich acetylene flames.  相似文献   

5.
This paper reported the analysis of dilution effects on the opposed-jet H2/CO syngas diffusion flames. A computational model, OPPDIF coupled with narrowband radiation calculation, was used to study one-dimensional counterflow syngas diffusion flames with fuel side dilution from CO2, H2O and N2. To distinguish the contributing effects from inert, thermal/diffusion, chemical, and radiation effects, five artificial and chemically inert species XH2, XCO, XCO2, XH2O and XN2 with the same physical properties as their counterparts were assumed. By comparing the realistic and hypothetical flames, the individual dilution effects on the syngas flames were revealed. Results show, for equal-molar syngas (H2/CO = 1) at strain rate of 10 s?1, the maximum flame temperature decreases the most by CO2 dilution, followed by H2O and N2. The inert effect, which reduces the chemical reaction rates by behaving as the inert part of mixtures, drops flame temperature the most. The thermal/diffusion effect of N2 and the chemical effect of H2O actually contribute the increase of flame temperature. However, the chemical effect of CO2 and the radiation effect always decreases flame temperature. For flame extinction by adding diluents, CO2 dilution favours flame extinction from all contributing effects, while thermal/diffusion effects of H2O and N2 extend the flammability. Therefore, extinction dilution percentage is the least for CO2. The dilution effects on chemical kinetics are also examined. Due to the inert effect, the reaction rate of R84 (OH+H2 = H+H2O) is decreasing greatly with increasing dilution percentage while R99 (CO+OH→CO2+H) is less affected. When the diluents participate chemically, reaction R99 is promoted and R84 is inhibited with H2O addition, but the trend reverses with CO2 dilution. Besides, the main chain-branching reaction of R38 (H+O2→O+OH) is enhanced by the chemical effect of H2O dilution, but suppressed by CO2 dilution. Relatively, the influences of thermal/diffusion and radiation effects on the reaction kinetics are then small.  相似文献   

6.
Samples of condensable material from opposed flow diffusion flames of methane and acetylene and oxygen enriched air at atmospheric pressure were collected and analyzed by high-pressure liquid chromatography to determine the fullerene yield. High resolution transmission electron microscopy studies revealed the presence of fullerenes and well-defined carbon layers with various degrees of curvature. Results show that fullerene formation strongly increases with the acetylene content in the fuel. Increasing strain rate positively affects the fullerene content in the condensable material; higher strain rate flames favor fullerenes over soot, indicating lower fullerene consumption by soot due to lower soot concentration. If the oxygen content in the oxidizing oxygen/nitrogen mixture is increased, fullerene concentration increases due to the higher temperatures and higher precursor concentration. Similar relative variations of fullerene concentrations with flame conditions are predicted by the numerical model. However, the absolute concentrations of fullerenes are, in general, underpredicted by 4 orders of magnitude. This result can be partially attributed to uncertainties in the rate coefficients for H-abstraction and C2H2-addition. This discrepancy also suggests that other important fullerene formation pathways are to be included in the numerical model.  相似文献   

7.
In microgravity combustion, where buoyancy is not present to accelerate the flow field and strain the flame, radiative extinction is of fundamental importance, and has implications for spacecraft fire safety. In this work, the critical point for radiative extinction is identified for normal and inverse ethylene spherical diffusion flames via atmospheric pressure experiments conducted aboard the International Space Station, as well as with a transient numerical model. The fuel is ethylene with nitrogen diluent, and the oxidizer is an oxygen/nitrogen mixture. The burner is a porous stainless-steel sphere. All experiments are conducted at constant reactant flow rate. For normal flames, the ambient oxygen mole fraction was varied from 0.2 to 0.38, burner supply fuel mole fraction from 0.13 to 1, total mass flow rate, total, from 0.6 to 12.2 mg/s, and adiabatic flame temperature, Tad, from 2000 to 2800 K. For inverse flames, the ambient fuel mole fraction was varied from 0.08 to 0.12, burner supply oxygen mole fraction from 0.4 to 0.85, total from 2.3 to 11.3 mg/s, and Tad from 2080 to 2590 K. Despite this broad range of conditions, all flames extinguish at a critical extinction temperature of 1130 K, and a fuel-based mass flux of 0.2 g/m2-s for normal flames, and an oxygen-based mass flux of 0.68 g/m2-s for inverse flames. With this information, a simple equation is developed to estimate the flame size (i.e., location of peak temperature) at extinction for any atmospheric-pressure ethylene spherical diffusion flame given only the reactant mass flow rate. Flame growth, which ultimately leads to radiative extinction if the critical extinction point is reached, is attributed to the natural development of the diffusion-limited system as it approaches steady state and the reduction in the transport properties as the flame temperature drops due to increasing flame radiation with time (radiation-induced growth.)  相似文献   

8.
掺氢天然气在稀释气体作用下的熄灭特性研究对实际燃烧设备的设计和优化具有重要的指导意义。本文利用对冲火焰法测量了掺氢天然气层流火焰在N2和CO2作用下的熄灭拉伸率,并采用数值模拟耦合详细化学反应机理对N2,CO2和He的稀释剂效应展开研究。结果表明,Li、GRI Mech 3.0和FFCM-1机理均能定性反映燃料熄灭拉伸率随当量比的变化规律,且FFCM-1机理综合预测精度最高。实验和模拟发现,不同稀释剂气体对掺氢天然气熄灭拉伸率降低幅度满足:He22。进一步研究发现,CO2由于热容大,在反应体系中会降低火焰温度,同时增强了链终止反应强度,通过热效应和化学效应两方面对火焰熄灭特性起作用。He则能显著改变燃料混合物的平均摩尔质量,从而改变体系中重要反应物和自由基的扩散特性,从扩散效应方面影响火焰的熄灭特性。  相似文献   

9.
10.
Laminar flame calculations have been made for a Tsuji counterflow geometry to investigate salient features caused by the differential diffusion effect in nitrogen-diluted hydrogen diffusion flames. A strong dependence of the differential diffusion parameter zH on fuel dilution is found, where zH is the difference of the mixture fractions based on H and O elements. The strain rate, however, appears to have a relatively minor impact on zH. A simplified transport equation for the zH parameter has been derived to explain qualitatively the behaviours exhibited in the numerical solutions. Two source terms of zH are identified in the transport equation; one is due to mixing among species of different diffusion coefficients and the other one is associated with chemical reactions of H2. More importantly, the second source term is found to be dominant in reacting flows, and it increases with inert gas dilution. This feature causes the differential diffusion parameter to increase with the amount of fuel dilution. The zH values at the stoichiometric position are shown to correlate well with the ratio, YH2O|max/(ZH,1?ZH,2), which may be useful for quantifying the influence of chemical reactions on the differential diffusion effect. For flames at low strain rates, the scalar dissipation rate exhibits a local minimum near the stoichiometric position. This peculiar feature is found to be caused by the differential diffusion effect modulated by chemical reactions. The local minimum in the scalar dissipation rate disappears at high strain rates when the convective transport overwhelms the molecular diffusion.  相似文献   

11.
Flame stabilisation and extinction in a number of different flows can be affected by application of electric fields. Electrons and ions are present in flames, and because of charge separation, weak electric fields can also be generated even when there is no externally applied electric field. In this work, a numerical model incorporating ambipolar diffusion and plasma kinetics has been developed to predict gas temperature, species, and ion and electron concentrations in laminar premixed flames without applied electric fields. This goal has been achieved by combining the existing CHEMKIN-based PREMIX code with a recently developed methodology for the solution of electron temperature and transport properties that uses a plasma kinetics model and a Boltzmann equation solver. A chemical reaction set has been compiled from seven sources and includes chemiionisation, ion-molecule, and dissociative–recombination reactions. The numerical results from the modified PREMIX code (such as peak number densities of positive ions) display good agreement with previously published experimental data for fuel-rich, non-sooting, low-pressure acetylene and ethylene flames without applied electric fields.  相似文献   

12.
A review of the physics and modelling of mass diffusion involving different gaseous chemical species is firstly proposed. Both accurate and simplified models for mass diffusion involve the calculation of individual species diffusion coefficients. Since these are computationally expensive, in CFD they are commonly estimated by assuming constant Lewis or Schmidt numbers for each chemical species. The constant Lewis number assumption is particularly used. As a matter of fact, these assumptions have never been theoretically justified nor verified in practical flames. The only published information are the first observations by Smooke and Giovangigli about the Lewis number against temperature distributions in methane–air premixed and counterflow diffusion one-dimensional flames. The aim of this work is to verify these assumptions. Functional dependences of molecular properties appearing in these numbers are made explicit to show that while Sc i depends only on composition, Le i depends also on temperature and therefore it certainly cannot be assumed constant in a flame. Then, accurately calculating molecular properties, distributions of these characteristic numbers against temperature are obtained a posteriori from numerical simulations of different flames, premixed and non-premixed, and burning different fuels. For non-premixed flames, individual species Lewis number distributions are broad for most of the species considered in this article, whilst they are tight for premixed flames. Some attention is focused on the particular shape of Lewis distributions in non-premixed flames: they are characterized by four or five (when extinction is experienced) branches associated to precise regions in the flame (basically, lean, rich and stoichiometric combusting zones). Instead, the Schmidt distributions are always tighter, also when extinctions take place: for many species they can be approximatively assumed constant. Finally, a simplified procedure to estimate individual species diffusion coefficients is suggested, assuming the median of non-premixed flame Schmidt distributions has a constant value for each chemical species.  相似文献   

13.
The present study experimentally investigates the structure and instabilities associated with extremely low-stretch (1 s−1) gaseous diffusion flames. Ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. OH-PLIF and IR imaging techniques are used to characterize the reaction zone and the burner surface temperature, respectively. A flame stability diagram mapping the response of the ultra-low-stretch diffusion flame to varying fuel injection rate and nitrogen dilution is explored. In this diagram, two main boundaries are identified. These boundaries separate the stability diagram into three regions: sooting flame, non-sooting flame, and extinction. Two distinct extinction mechanisms are noted. For low fuel injection rates, flame extinction is caused by heat loss to the burner surface. For relatively high injection rates, at which the heat loss to burner surface is negligible, flame radiative heat loss is the dominant extinction mechanism. There also exists a critical inert dilution level beyond which the flame cannot be sustained. The existence of multi-dimensional flame phenomena near the extinction limits is also identified. Various multi-dimensional flame patterns are observed, and their evolutions are studied using direct chemiluminescence and OH-PLIF imaging. The results demonstrate the usefulness of the present burner configuration for the study of low-stretch gaseous diffusion flames.  相似文献   

14.
The effect of hydrogen addition to ultra lean counterflow CH4/air premixed flames on the extinction limits and the characteristics of NOx emission was investigated by numerical simulation. Detailed chemistry and complex thermal and transport properties were employed. The results show that the addition of hydrogen can significantly enlarge the flammable region and extend the flammability limit to lower equivalence ratios. If the equivalence ratio is kept constant, the addition of hydrogen increases the emission of NO in a flame due to the enhancement in the rate of the NNH or N2O intermediate NO formation routes. The addition of hydrogen causes a monotonic decrease in the formation of NO2 and N2O, except flames near the extinction limits, where the emission of NO2 and N2O first increases, and then decreases with the increase in the fraction of hydrogen. Overall, hydrogen enrichment technology allows stable combustion under ultra lean conditions, resulting in significant CO2 and NO emission reduction.  相似文献   

15.
Chemical energy vectors will play a crucial role in the transition of the global energy system, due to their essential advantages in storing energy in form of gaseous, liquid, or solid fuels. Ammonia (NH3) has been identified as a highly promising candidate, as it is carbon-free, can be stored at moderate pressures, and already has a developed distribution infrastructure. As a fuel NH3 has poor combustion properties that can be improved by the addition of hydrogen, which can be obtained energy-efficiently by partially cracking ammonia into hydrogen (H2) and nitrogen (N2) prior to the combustion process. The resulting NH3/H2/N2 blend leads to significantly improved flame stability and resilience to strain-induced blow-out, despite similar laminar flame properties compared to equivalent methane/air flames. This study reports the first measurements of extinction strain rates, measured using the premixed twin-flame configuration in a laminar opposed jet burner, for two NH3/H2/N2 blends over a range of equivalence ratios. Local strain rates are measured using particle tracking velocimetry (PTV) and are related to the inflow conditions, such that the local strain rate at the extinction point can be approximated. The results are compared with 1D-simulations using three recent kinetic mechanisms for ammonia oxidation. By relating the extinction strain rates to laminar flame properties of the unstretched flame, a comparison of the extinction behaviour of CH4 and NH3/H2/N2 blends can be made. For lean mixtures, NH3/H2/N2-air flames show a significant higher extinction resistance in comparison to CH4/air. In addition, a strong non-linear dependence between the resistance to extinction and equivalence ratio for NH3/H2/N2 blends is observed.  相似文献   

16.
Experimental and numerical simulation results are reported of partially-premixed cellular tubular flames. Parametric measurements across stretch rate and equivalence ratio are taken by chemiluminescent imaging and are presented for the first time. Select hybrid cases with both cellular and non-cellular flame structures are examined with laser-induced spontaneous Raman scattering. Results are spatially resolved in two dimensions and radial interpolations of reaction and extinction zones are compared to numerical simulations using multicomponent transport and detailed chemical kinetics. Experimental cell structures and extinction zones are well predicted by numerical simulation, with discrepancies of temperature and H2O and temperature primarily observed in locations with moderate and high mole fractions of CO2. A novel cellular structure, denoted as a “split-cell” flame, is reported for the first time with both chemiluminescent imaging and Raman scattering. Results indicate that partially-premixed flames are valuable as experimental and numerical benchmarks to advance fundamental combustion research.  相似文献   

17.
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.  相似文献   

18.
Whether steady-state gaseous microgravity spherical diffusion exist in the presence of radiation heat loss is an important fundamental question and has important implications for spacecraft fire safety. In this work, experiments aboard the International Space Station and a transient numerical model are used to investigate the existence of steady-state microgravity spherical diffusion flames. Gaseous spherical diffusion flames stabilized on a porous spherical burner are employed in normal (i.e., fuel flowing into an ambient oxidizer) and inverse (i.e., oxidizer flowing into an ambient fuel) flame configurations. The fuel is ethylene and the oxidizer oxygen, both diluted with nitrogen. The flow rate of the reactant gas from the burner is held constant. It is found that steady-state gaseous microgravity spherical diffusion flames can exist in the presence of radiation heat loss, provided that the steady-state flame size is less than the flame size for radiative extinction, and the flame develops fast enough that radiation heat loss does not drop the flame temperature below the critical temperature for radiative extinction (1130 K). A simple model is provided that allows for the identification of initial conditions that can lead to steady-state spherical diffusion flames. In the spherical, infinite domain configuration, the characteristic time for the diffusion-controlled system to effectively reach steady-state is found to be on the order of 100,000 s. Despite a narrow range of attainable conditions, flames that exhibit steady-state behavior are observed aboard the ISS for up to 870 s, even with the constraint of a finite boundary. Steady-state flames are simulated using the numerical model for over 100,000 s.  相似文献   

19.
20.
对氢、正烷烃碳氢燃料与氧的对向扩散火焰,其中正烷烃包含了在工业用燃料中广泛应用的CnH2n+2正烷烃CH4~C16H34,对这些燃料的火焰结构进行了分析和比较,系统地分析了压力和拉伸率对火焰行为和热释放率等的影响,其中包含了2115个组分8157个可逆反应.研究结果表明,所有燃料的火焰厚度和热释放率与压力和拉伸率的乘积的平方根成线性关系.在相同工况下,氢的火焰厚度总是大于所有的碳氢燃料,而CH4~C16H34所有的碳氢燃料在相同工况下总是具有几乎相同的燃烧温度分布、燃烧产物分布、火焰厚度和热释放率,该结果表明由这些碳氢燃料组成的混合燃料具有同样的火焰特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号