首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoscale flame propagation and extinction of premixed flames in channels are investigated theoretically and experimentally. Emphasis is placed on the effect of wall heat loss and the wall–flame interaction via heat recirculation. At first, an analytical solution of flame speed in mesoscale channels is obtained. The results showed that channel width, flow velocity, and wall thermal properties have dramatic effects on the flame propagation and lead to multiple flame regimes and extinction limits. With the decrease in channel width, there exist two distinct flame regimes, a fast burning regime and a slow burning regime. The existence of the new flame regime and its extended flammability limit render the classical quenching diameter inapplicable. Furthermore, the results showed that at optimum conditions of flow velocity and wall thermal properties, mesoscale flames can propagate faster than the adiabatic flame. Second, numerical simulation with detailed chemistry demonstrated the existence of multiple flame regimes. The results also showed that there is a non-linear dependence of the flame speed on equivalence ratio. Moreover, it is shown that the Nusselt number has a significant impact on this non-linear dependence. Finally, the non-linear dependence of flame speed on equivalence ratio for both flame regimes is measured using a C3H8–air mixture. The results are in good agreement with the theory and numerical simulation.  相似文献   

2.
The thickness of the instantaneous flamelets in a turbulent flame brush on a weak-swirl burner burning in the thin reaction zones regime has been analysed experimentally, theoretically, and numerically. The experimental flame thickness has been measured correlating two simultaneous Rayleigh images and one OH-image from two closely spaced cross sections in the flame. It appears that the low temperature edge of the flame is thickened by turbulent eddies but that these structures cannot penetrate far enough into the flame front to distort the inner layer for the moderate Karlovitz numbers used. The flame front based on the temperature gradient at the inner layer becomes thinner for lean flames and thicker for rich methane–air flames. This has been explained theoretically and numerically by studying the influence of flame stretch and preferential diffusion on the flame thickness. It appears that the flame front thickness at the inner layer (and mass burning rate) is not influenced by turbulent mixing processes, and it seems that eddies of the size of the inner layer have to be used to change this picture. Experiments closer to the boundary of the broken reaction zones regime have to confirm this in the future.  相似文献   

3.
Characteristics of premixed combustion in a heated channel with an inner diameter smaller than the conventional quenching distance of the employed mixture were investigated experimentally, analytically, and numerically. A cylindrical quartz tube with an inner diameter of 2 mm was used as a model channel. The downstream part of the tube was heated by an external heat source, and hence the temperature gradient in the axial direction was formed in the middle of the tube. Flat and stationary conventional premixed flames were stabilized at a point in this temperature gradient. In addition to these flames, various other flames that exhibit dynamic behaviors such as cyclic oscillatory motions, and repetitive ignition and extinction were also observed experimentally. These flames with large amplitude oscillatory motion might be utilized as a heat source with high speed temporal temperature variations in microsystems for future application. Another stable flame region in extremely low speed criteria at a mixture velocity of 2–3 cm/s was also experimentally confirmed. This flame was inferred to be an example of mild combustion, and it might also be used as a mild heat source for microdevices. The overall stability criteria of these flame regimes were analytically examined, and the detailed structure of each flame on the stable solution branches was numerically examined by employing 1D computation with detailed chemistry. The two results qualitatively agreed with each other and clarified the mechanism of the present various flames and their dynamic characteristics.  相似文献   

4.
Controlling the flame shape and its liftoff height is one of the main issues for oxy-flames to limit heat transfer to the solid components of the injector. An extensive experimental study is carried out to analyze the effects of co- and counter-swirl on the flow and flame patterns of non-premixed oxy-flames stabilized above a coaxial injector when both the inner fuel and the annular oxidizer streams are swirled. A swirl level greater than 0.6 in the annular oxidizer stream is shown to yield compact oxy-flames with a strong central recirculation zone that are attached to the rim of central fuel tube in absence of inner swirl. It is shown that counter-swirl in the fuel tube weakens this recirculation zone leading to more elongated flames, while co-swirl enhances it with more compact flames. These results obtained for high annular swirl levels contrast with previous observations made on gas turbine injectors operated at lower annular swirl levels in which central recirculation of the flow is mainly achieved with counter-rotating swirlers. Imparting a high inner swirl to the central fuel stream leads to lifted flames due to the partial blockage of the flow at the injector outlet by the central recirculation zone that causes high strain rates in the wake of the injector rim. This partial flow blockage is more influenced by the level of the inner swirl than its rotation direction. A global swirl number is then introduced to analyze the structure of the flow far from the burner outlet where swirl dissipation takes place when the jets mix. A model is derived for the global swirl number which well reproduces the evolution of the mass flow rate of recirculating gases measured in non-reacting conditions and the flame liftoff height when the inner and outer swirl levels and the momentum flux ratio between the two streams are varied.  相似文献   

5.
In the present work, direct numerical simulation (DNS) of a laboratory-scale lean premixed reacting jet flame in crossflow was performed to understand the flame structures and the flame stabilization mechanism. In the DNS, an ethylene-air jet with an equivalence ratio of 0.6 was injected into a hot vitiated crossflow. The jet Reynolds number reaches 6161. The DNS results were compared with those of the experiment with a good agreement. It was found that the windward and leeward branches of the flame show significantly different behaviors. The windward flame branch, appearing lifted and discontinuous, is located in the shear layer regions with high temperature, low vorticity and low scalar dissipation rate. The location of the peak heat release rate shifts to a higher mixture fraction with increasing distance from the jet exit. The leeward branch of the flame anchors in the shear layer near the jet exit. The recirculation zone in the wake of the jet facilitates the stabilization of the leeward flame. The chemical explosive mode analysis (CEMA) and species budget analysis were employed to characterize the local combustion mode. Auto-ignition plays a key role in the stabilization of the windward flame where a large range of extinction is also found due to the high strain rate. In contrast, premixed flame propagation is dominant on the leeward side.  相似文献   

6.
The structure and propagation properties of diffusion neutral triple flames subject to buoyancy effects are studied numerically using a high-accuracy scheme. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction as the gravity vector) and upward-propagating (in the opposite direction to the gravity vector) triple flames. These results are used to identify non-dimensional quantities, which parametrize the triple flame responses. Results show that buoyancy acts primarily to modify the overall span of the premixed branches in response to gas acceleration across the triple flame. The impact of buoyancy on the structure of triple flame is less pronounced than its impact on the topology of the branches. The trailing diffusion branch is affected by buoyancy primarily as a result of the changes in the overall flame size, which consequently modifies the rates of diffusion of excess fuel and oxidizer from the premixed branches to the diffusion branch. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed.  相似文献   

7.
Stationary combustion regimes, their linear stability and extinction limits of stretched premixed flames in a narrow gap between two heat conducting plates are studied by means of numerical simulations in the framework of one-dimensional thermal-diffusion model with overall one-step reaction. Various stationary combustion modes including normal flame (NF), near-stagnation plane flame (NSF), weak flame (WF) and distant flame (DF) are detected and found to be analogous to the same-named regimes of conventional counterflow flames. For the flames stabilized in the vicinity of stagnation plane at moderate and large stretch rates (which are NF, NSF and WF) the effect of channel walls is basically reduced to additional heat loss. For distant flame characterized by large flame separation distance and small stretch rates intensive interphase heat transfer and heat recirculation are typical. It is shown that in mixture content / stretch rate plane the extinction limit curve has ε-shape, while for conventional counterflow flames it is known to be C-shaped. This result is quite in line with recent experimental findings and is explained by extension of extinction limits at small stretch rates at the expense of heat recirculation. Analysis of the numerical results makes possible to reveal prime mechanisms of flame quenching on different branches of ε-shaped extinction limit curve. Namely, two upper limits are caused by stretch and heat loss. These limits are direct analogs of the upper and lower limits on conventional C-shaped curve. Two other limits are related with weakening of heat recirculation and heat dissipation to the burner. Thus, the present study provides a satisfactory explanation for the recent experimental observations of stretched flames in narrow channel.  相似文献   

8.
The objective of this study is to construct a regime diagram for laminar flames stabilized behind flame holders with respect to the presence of a recirculation zone (RZ), trend of heat loss to the burner, and flow strain and flame curvature effects. This is achieved by varying the radius of the cylindrical flame holder and the mixture velocity between the flashback limit and the blow-off limit at a fixed equivalence ratio. It is found that for all flame holders, a RZ vortex is not present near the flashback limit. At flashback, flow strain is almost zero and the flame curvature is found to be the main contributor to flame stretch. With increasing mixture velocity, the heat loss to the flame holder decreases for smaller radii and a RZ does not appear till blow-off occurs. For flame holders with radii greater than twice the flame thickness, the heat loss to the flame holder first decreases with increasing mixture velocity without a RZ. A further increase in the mixture velocity does not result in blow-off but instead, a RZ appears behind the flame holder reversing the heat loss trend. In this scenario, flow strain is found to increase significantly and becomes the major contributor to flame stretch, although curvature effects are still present. With the RZ present, the blow-off limits are significantly extended and the stabilization mechanism is altered. The RZ vortex shields the flame base from intense pre-heating resulting from the increase in heat loss to the flame-holder while it provides support to the flame leading edge by recirculation of hot products. The results obtained from this study are used to construct a regime diagram, which offers a broader view of the whole flame stabilization process and its mechanisms.  相似文献   

9.
对丙烷/空气在内径2 mm的圆管内的预混燃烧进行了实验研究,借助于高速数码摄像机发现了分裂火焰现象,其中一个为向上游传播的较亮的常规火焰,另一个为向下游传播的较暗的微弱火焰。这些火焰先后熄灭,经过一段时间后又重复发生自着火、分裂、反向传播、灭火过程。这种现象在富燃、化学恰当比以及贫燃火焰中都有存在。一维非稳态计算表明化...  相似文献   

10.
The propagation of premixed laminar flame in ducts of circular cross-section considering a thermal-diffusive model is investigated numerically. Heat losses by conduction to the channels walls are taken into account using the thermally thin wall regime. The effects and the relationship between thickness and diameter of the tube with the flame speed propagation are studied and the quenching condition is obtained as a function of the heat-loss parameter. The mathematical model employs the axisymmetric energy and species equations. The calculations are based on a two-step chemistry, with an Arrhenius, energetically neutral, radical production reaction followed by an exothermic radical recombination reaction. For large values of the heat-loss parameter, the wall temperature is close to the free stream temperature and all the heat losses through the wall are convected away. No heat feedback occurs. On the other hand, for small values of the heat-loss parameter, a feedback mechanism occurs by transferring heat from the burned gas to the fresh mixture along the tube wall. For values of the heat-loss parameter of order unity, the heat feedback mechanism is able to sustain the flame propagation and the quenching condition disappears, producing an almost planar flame front as the propagation velocity reduces. For this two-step reaction mechanism, the radical species behaviour at the duct walls seems to have negligible effect on the quenching process.  相似文献   

11.
A series of experiments were carried out in a closed tube at cryogenic temperature (77 K) for hydrogen-oxygen mixtures. Flame propagation speed and overpressure were measured by optical fibers and pressure sensors, respectively. The first and second shock waves were captured in the cryogenic experiments, although the shock waves always precede the flames in all cases indicating the absence of stable detonation. However, strong flame acceleration was observed for all situations, which is consistent with the prediction by expansion ratio and Zeldovich number. Besides, the tube diameter and length are also critical for flame acceleration to supersonic. All the flames in this work accelerate drastically reaching the C-J deflagration state. But at 0.4 atm, only fast flame is formed, while at higher initial pressures, the flame further accelerates to a galloping mode manifesting a near-limit detonation, which could be indicated by the stability parameter χ.  相似文献   

12.
Numerical simulations were conducted to study the dynamics of premixed flames propagating in a closed tube by solving the fully compressible reactive Navier–Stokes equations using a high-order numerical method on a dynamically adapting grid. A simplified chemical-diffusive model was used to describe the reactions and energy release in a stoichiometric hydrogen-air mixture. The influence of wall boundary condition on the flame dynamics was explored by considering three different types of condition on the walls: adiabatic no-slip, adiabatic free-slip, and isothermal. The calculations show that the wall boundary condition has a significant effect on the generation and amplification of pressure waves and consequently on the flame dynamics. In the early stages of flame propagation, the flame behaves in a similar manner for different boundary conditions, that is, the flame develops a tulip shape that further evolves into a distorted tulip flame (DTF) through Rayleigh-Taylor instability arising from acoustic-flame interaction. Significant differences, however, arise after DTF formation in the late stages, especially when the primary acoustic wave is amplified to form a shock wave in the adiabatic free-slip and isothermal cases. The shock-flame interactions facilitate the formation of a series of increasingly corrugated flames by triggering the Richtmyer–Meshkov instabilities. The way how the lateral flame fronts touch the tube sidewalls to generate the primary acoustics and the heat conduction through the tube sidewalls play an important role in the generation and amplification of the pressure waves.  相似文献   

13.
This experimental study addresses issue on the effect of burner lip thickness on the liftoff and blowout velocities of jet diffusion flame discharging into quiescent air. Burner tubes of two kinds of inner diameter (2 and 3 mm) with a wide range of lip thicknesses (0.25–16.5 mm) are implemented with methane or propane jet diffusion flame, respectively. The results show that the burner lip thickness has a profound effect on flame liftoff velocities, especially the blowout velocities. With the increase of the lip thickness, the blowout velocities firstly increase, then decrease and lastly remain unchanged. Specifically, the blowout velocities of 2 and 3 mm inner diameters tubes reach the maximum values when the corresponding burner lip thicknesses are 2 and 1.5 mm, respectively. In addition, compared with free (unconfined) jet diffusion flame, the jet confinement results in slight reductions of flame liftoff and blowout velocities. The existence range of lifted flame issuing from larger diameter burner tube is wider than that of smaller diameter burner tube. The existence range of propane lifted flame is wider than that of methane.  相似文献   

14.
The dynamics of flames propagating in straight channels filled with a stationary low-Lewis-number premixed gas mixture is studied numerically. A method for determining the propagation velocity of a sporadic combustion wave consisted of separate flame spots is proposed. Dependencies of the sporadic combustion wave propagation velocity, the residual fuel concentration and the number of flame spots on the channel size and the value of radiation heat losses are obtained. Analysis of numerical results show that for the channels of diameter exceeding some value the number of separate cup-like fragments constituting sporadic combustion wave is proportional to the channel cross-sectional area. At smaller diameters, the number of flame spots changes insignificantly and is one or two. It is shown that one of the universal characteristics of the sporadic combustion wave depending only on mixture properties but independent on system geometry is the area necessary to accommodate one reacting spot. Flame velocity which is another fundamental combustion characteristic is found to be almost independent on channel size starting from some critical diameter. This diameter, however, depends on mixture properties or radiative heat loss intensity and corresponds to the sporadic flame containing from several to ten reacting spots. Thus, the main properties of sporadic combustion waves in wide channels can be determined by numerical modeling of the flame propagation in the relatively narrow channels in which the flame consists of 1–10 cup-like fragments.  相似文献   

15.
The combustion of nanometric aluminium (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. The analysis was performed to correlate individual Al particle gasification rates to macroscopic flame propagation rates observed in flame tube experiments. Examination of various characteristic times relevant to propagation of a deflagration reveals that particles below about 1.7 nm in diameter evaporate before appreciable chemical reactions occur. Experimental studies used Al particles greater than 1.7 nm in diameter such that a diffusion flame model was developed to better understand the combustion dynamics of multiphase Al particles greater than 1.7 nm diameter relative to experimentally measured macroscopic flame propagation rates. The diffusion flame model predicted orders of magnitude slower propagation rates than experimentally observed. These results imply that (1) another reaction mechanism is responsible for promoting reaction propagation and/or (2) modes other than diffusion play a more dominant role in flame propagation.  相似文献   

16.
Under micro-scale combustion influenced by quenching distance, high heat loss, shortened diffusion characteristic time, and flow laminarization, we clarified the most important issues for the combustor of ultra-micro gas turbines (UMGT), such as high space heating rate, low pressure loss, and premixed combustion. The stability behavior of single flames stabilized on top of micro tubes was examined using premixtures of air with hydrogen, methane, and propane to understand the basic combustion behavior of micro premixed flames. When micro tube inner diameters were smaller than 0.4 mm, all of the fuels exhibited critical equivalence ratios in fuel-rich regions, below which no flame formed, and above which the two stability limits of blow-off and extinction appeared at a certain equivalence ratio. The extinction limit for very fuel-rich premixtures was due to heat loss to the surrounding air and the tube. The extinction limit for more diluted fuel-rich premixtures was due to leakage of unburned fuel under the flame base. This clarification and the results of micro flame analysis led to a flat-flame burning method. For hydrogen, a prototype of a flat-flame ultra-micro combustor with a volume of 0.067 cm3 was made and tested. The flame stability region satisfied the optimum operation region of the UMGT with a 16 W output. The temperatures in the combustion chamber were sufficiently high, and the combustion efficiency achieved was more than 99.2%. For methane, the effects on flame stability of an upper wall in the combustion chamber were examined. The results can be explained by the heat loss and flame stretch.  相似文献   

17.
We conducted a numerical study on the fluid dynamic, thermal and chemical structures of laminar methane–air micro flames established under quiescent atmospheric conditions. The micro flame is defined as a flame on the order of one millimetre or less established at the exit of a vertically-aligned straight tube. The numerical model consists of convective–diffusive heat and mass transport with a one-step, irreversible, exothermic reaction with selected kinetics constants validated for near-extinction analyses. Calculations conducted under the burner rim temperature 300 K and the adiabatic burner wall showed that there is the minimum burner diameter for the micro flame to exist. The Damköhler number (the ratio of the diffusive transport time to the chemical time) was used to explain why a flame with a height of less than a few hundred microns is not able to exist under the adiabatic burner wall condition. We also conducted scaling analysis to explain the difference in extinction characteristics caused by different burner wall conditions. This study also discussed the difference in governing mechanisms between micro flames and microgravity flames, both of which exhibit similar spherical flame shape.  相似文献   

18.
A numerical study of one-dimensional n-heptane/air spray flames is presented. The objective is to evaluate the flame propagation speed in the case where droplets evaporate inside the reaction zone with possibly non-zero relative velocity. A Direct Numerical Simulation approach for the gaseous phase is coupled to a discrete particle Lagrangian formalism for the dispersed phase. A global two-step n-heptane/air chemical mechanism is used. The effects of initial droplet diameter, overall equivalence ratio, liquid loading and relative velocity between gaseous and liquid phases on the laminar spray flame speed and structure are studied. For lean premixed cases, it is found that the laminar flame speed decreases with increasing initial droplet diameter and relative velocity. On the contrary, rich premixed cases show a range of diameters for which the flame speed is enhanced compared to the corresponding purely gaseous flame. Finally, spray flames controlled by evaporation always have lower flame speeds. To highlight the controlling parameters of spray flame speed, approximate analytical expressions are proposed, which give the correct trends of the spray flame propagation speed behavior for both lean and rich mixtures.  相似文献   

19.
Characteristics of microjet methane diffusion flames stabilized on top of the vertically oriented, stainless-steel tubes with an inner diameter ranging from 186 to 778 μ m are investigated experimentally, theoretically and numerically. Of particular interest are the flame shape, flame length and quenching limit, as they may be related to the minimum size and power of the devices in which such flames would be used for future micro-power generation. Experimental measurements of the flame shape, flame length and quenching velocity are compared with theoretical predictions as well as detailed numerical simulations. Comparisons of the theoretical predictions with measured results show that only Roper's model can satisfactorily predict the flame height and quenching velocity of microjet methane flames. Detailed numerical simulations, using skeletal chemical kinetic mechanism, of the flames stabilized at the tip of d = 186, 324 and 529 μ m tubes are performed to investigate the flame structures and the effects of burner materials on the standoff distance near extinction limit. The computed flame shape and flame length for the d = 186 μm flame are in excellent agreement with experimental results. Numerical predictions of the flame structures strongly suggest that the flame burns in a diffusion mode near the extinction limit. The calculated OH mass fraction isopleths indicate that different tube materials have a minor effect on the standoff distance, but influence the quenching gap between the flame and the tube.  相似文献   

20.
Extinction limits and flame bifurcation of lean premixed dimethyl ether–air flames are numerically investigated using the counterflow flame with a reduced chemistry. Emphasis is paid to the combined effect of radiation and flame stretch on the extinction and flammability limits. A method based on the reaction front is presented to predict the Markstein length. The predicted positive Markstein length agrees well with the experimental data. The results show that flow stretch significantly reduces the flame speed and narrows the flammability limit of the stretched dimethyl ether–air flame. It is found that the combined effect of radiation and flow stretch results in a new flame bifurcation and multiple flame regimes. At an equivalence ratio slightly higher than the flammability limit of the planar flame, the distant flame regime appears at low stretch rates. With an increase in the equivalence ratio, in addition to the distant flame, a weak flame isola emerges at moderate stretch rates. With a further increase in the equivalence ratio, the distant flame and the weak flame branches merge together, resulting in the splitting of the weak flame branch into two weak flame branches, one at low stretch and the other at high stretch. Flame stability analysis demonstrates that the high stretch weak flame is also stable. Furthermore, a K-shaped flammability limit diagram showing various flame regimes and their extinction limits is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号