首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.  相似文献   

2.
Characteristics and structure of inverse flames of natural gas   总被引:2,自引:0,他引:2  
Characteristics and structure of nominally non-premixed flames of natural gas are investigated using a burner that employs simultaneously two distinct features: fuel and oxidiser direct injection, and inverse fuel and oxidiser delivery. At low exit velocities, the result is an inverse diffusion flame that has been noted in the past for its low NOx emissions, soot luminosity, and narrow stability limits. The present study aimed at extending the burner operating range, and it demonstrated that the inverse flame exhibits a varying degree of partial premixing dependent on the discharge nozzle conditions and the ratio of inner air jet and outer fuel jet velocities. These two variables affect the flame length, temperature distributions, and stability limits. Temperature measurements and Schlieren visualisation show areas of enhanced turbulent mixing in the shear region and the presence of a well-mixed reaction zone on the flame centreline. This reaction zone is enveloped by an outer diffusion flame, yielding a unique double-flame structure. As the fuel–air equivalence ratio is decreasing with an increase in the inner jet velocity, the well-mixed reaction zone extends considerably. These findings suggest a method for establishing a flame of uniform high temperature by optimising the coaxial nozzle geometry and flow conditions. The normalised flame length is decreasing exponentially with the air/fuel velocity ratio. Measurements demonstrate that the inverse flame stability limits change qualitatively with varying degree of partial premixing. At the low premixing level, the flame blow-out is a function of the inner and outer jet velocities and the nozzle conditions. The flame blow-out at high degree of partial premixing occurs abruptly at a single value of the inner air jet velocity, regardless of the fuel jet velocity and almost independent of the discharge nozzle conditions.  相似文献   

3.
高温空气燃烧NOx排放特性的试验研究   总被引:2,自引:0,他引:2  
通过两种结构烧嘴的热态燃烧试验对比,研究了烧嘴结构、燃气射流速度、过量空气系数对高温空气燃烧过程氮氧化物排放的影响特性。研究结果认为:在燃气喷口两侧布置两个矩形空气喷口的烧嘴,氮氧化物排放量低于圆形空气喷口烧嘴;随着燃气射流速度的提高,高温空气燃烧过程排放的氮氧化物逐渐减少。与普通燃烧过程不同的是,随着过量空气系数的提高,在一定范围内高温空气燃烧的氮氧化物排放量不断增加。分析认为,高温空气燃烧氮氧化物排放量与火焰体积、炉内氧气与燃气混合过程以及燃气射流和空气射流对炉内烟气的卷吸量有关。  相似文献   

4.
Lagrangian PDF investigations are performed of the Sandia piloted flame E and the Cabra H2/N2 lifted flame to help develop a deeper understanding of local extinction, re-ignition and auto-ignition in these flames, and of the PDF models' abilities to represent these phenomena. Lagrangian particle time series are extracted from the PDF model calculations and are analyzed. In the analysis of the results for flame E, the particle trajectories are divided into two groups: continuous burning and local extinction. For each group, the trajectories are further sub-divided based on the particles' origin: the fuel stream, the oxidizer stream, the pilot stream, and the intermediate region. The PDF calculations are performed using each of three commonly used models of molecular mixing, namely the EMST, IEM and modified Curl mixing models. The calculations with different mixing models reproduce the local extinction and re-ignition processes observed in flame E reasonably well. The particle behavior produced by the IEM and modified Curl models is different from that produced by the EMST model, i.e., the temperature drops prior to (and sometimes during) re-ignition. Two different re-ignition mechanisms are identified for flame E: auto-ignition and mixing-reaction. In the Cabra H2/N2 lifted flame, the particle trajectories are divided into different categories based on the particles' origin: the fuel stream, the oxidizer stream, and the intermediate region. The calculations reproduce the whole auto-ignition process reasonably well for the Cabra flame. Four stages of combustion in the Cabra flame are identified in the calculations by the different mixing models, i.e., pure mixing, auto-ignition, mixing-ignition, and fully burnt, although the individual particle behavior by the IEM and modified Curl models is different from that by the EMST model. The relative importance of mixing and reaction during re-ignition and auto-ignition are quantified for the IEM model.  相似文献   

5.
LES-CMC simulations of a turbulent bluff-body flame   总被引:1,自引:0,他引:1  
The large Eddy simulations (LES)-conditional moment closure (CMC) method with detailed chemistry is applied to a bluff-body stabilized flame. Computations of the velocity and mixture fraction fields show good agreement with the experiments. Temperature and major species are well-predicted throughout the flame with the exception of the flow regions in the outer shear layer close to the nozzle where the pure mixing between hot recirculating products and fresh oxidizer cannot be captured. LES-CMC generally improves on results obtained with RANS-CMC and on LES that uses one representative flamelet to model the dependence of reactive species on mixture fraction. Simulated CO mass fractions are generally in good agreement with the experimental data although a 10% overprediction can be found at downstream positions. NO predictions show a distinct improvement over the flamelet approach, however, simulations overpredict NO mass fractions at all downstream locations due to an overprediction of temperature close to the nozzle. The potential of LES-CMC to predict unsteady finite rate effects is demonstrated by the prediction of endothermic—or “flame cooling”—regions close to the neck of the recirculation zone that favours ethylene production via the methane fuel decomposition channel.  相似文献   

6.
The structure of hydrogen jet flame diluted by CO2 in air flow is studied by various visualization techniques, such as schlieren, direct photograph, tracer injection and reactive Mie scattering method, which allow understanding of the influence of CO2 on the characteristics of the hydrogen jet flame. The experimental result indicates that the flame structure consists of laminar fuel jet and surrounding reaction zone near the nozzle exit. When the CO2 fraction is increased, the width of the fuel jet grows and the reaction zone is reduced in size. These observations are further confirmed by quantitative measurements of temperature and velocity fields in the flame, which are evaluated by thermocouple and particle image velocimetry (PIV), respectively. These results indicate that the flame temperature is decreased and the flow rate of the fuel jet is increased by the influence of diluents, which are due to the reduced calorific value and larger density of fuel, respectively.  相似文献   

7.
Autoignition of non-premixed methane–air mixtures is investigated using first-order Conditional Moment Closure (CMC). Turbulent velocity and mixing fields simulations are decoupled from the CMC calculations due to low temperature changes until ignition occurs. The CMC equations are cross-stream averaged and finite differences are applied to discretize the equations. A three-step fractional method is implemented to treat separately the stiff chemical source term. Two detailed chemical kinetics mechanisms are tested as well as two mixing models. The present results show good agreement with published experimental measurements for the magnitude of both ignition delay and kernel location. The slope of the predicted ignition delay is overpredicted and possible sources of discrepancy are identified. Both scalar dissipation rate models produce comparable results due to the turbulent flow homogeneity assumption. Further, ignition always occurs at low scalar dissipation rates, much lower than the flamelet critical value of ignition. Ignition is found to take place in lean mixtures for a value of mixture fraction around 0.02. The conditional species concentrations are in qualitative agreement with previous research. Homogeneous and inhomogeneous CMC calculations are also performed in order to investigate the role of physical transport in the present autoignition study. It is found that spatial transport is small at ignition time. Predicted ignition delays are shown to be sensitive to the chemical kinetics. Reasonable agreement with previous simulations is found. Improved formulations for the mixing model based on non-homogeneous turbulence are expected to have an impact.  相似文献   

8.
The stability mechanism of laminar coflow jet diffusion flames in normal gravity has been studied computationally and experimentally. N-butane, the heaviest alkane in a gaseous state at ambient temperature and pressure, is used as the fuel since the reaction mechanism is similar to that of higher (liquid) hydrocarbons. The critical mean n-butane jet and coflowing air velocities at flame stability limits are measured using a small fuel tube burner (0.8 mm inner diameter). The time-dependent, axisymmetric numerical code with a detailed reaction mechanism (58 species and 540 reactions), molecular diffusive transport, and a radiation model, reveals a flame structure. A fuel-lean peak reactivity spot (i.e., reaction kernel), possessing the hybrid nature of diffusion-premixed flame structure at a constant temperature of ≈1560 K, is formed at the flame base and controls the flame stability. In a near-quiescent environment, the flame base resides below the fuel tube exit plane and thereby premixing is limited. As the coflowing air velocity is increased incrementally under a fixed fuel jet velocity, the flame base moves slightly above (≈1 mm) the burner exit and vigorous premixed combustion becomes prevailing. The local heat-release rate at the reaction kernel nearly doubles due to the increased convective oxygen flux (i.e., a blowing effect). The local Damköhler number, newly defined as a ratio of the square root of the local heat-release rate and the local velocity, decreases gradually first and drops abruptly at a critical threshold value and the flame base lifts off from the burner rim. The calculated coflow air velocity at liftoff is ≈0.38 m/s at the fuel jet velocity of 2 m/s, which is consistent with an extrapolated measured value of 0.41 m/s. This work has determined the critical Damköhler number at the stability limit quantitatively, for the first time, for laminar jet diffusion flames.  相似文献   

9.
The unsteady, reactive Navier-Stokes equations with a detailed chemical mechanism of 11 species and 27 steps were employed to simulate the mixing, flame acceleration and deflagration-to-detonation transition (DDT) triggered by transverse jet obstacles. Results show that multiple transverse jet obstacles ejecting into the chamber can be used to activate DDT. But the occurrence of DDT is tremendously difficult in a non-uniform supersonic mixture so that it required several groups of transverse jets with increasing stagnation pressure. The jets introduce flow turbulence and produce oblique and bow shock waves even in an inhomogeneous supersonic mixture. The DDT is enhanced by multiple explosion points that are generated by the intense shock wave focusing of the leading flame front. It is found that the partial detonation front decouples into shock and flame, which is mainly caused by the fuel deficiency, nevertheless the decoupled shock wave is strong enough to reignite the mixture to detonation conditions. The resulting transverse wave leads to further mixing and burning of the downstream non-equilibrium chemical reaction, resulting in a high combustion temperature and intense flow instabilities. Additionally, the longitudinal and transverse gradients of the non-uniform supersonic mixture induce highly dynamic behaviors with sudden propagation speed increase and detonation front instabilities.  相似文献   

10.
In the current study, the auto-ignition dynamics of cold fuel jets issuing into a high-temperature, vitiated environments is investigated. Due to the short time scale of these events, high-speed measurements are used to resolve the coupled spatio-temporal behavior. The present study uses high-speed (20-kHz) OH* chemiluminescence imaging to identify the location and timing of the formation of the initial ignition kernels, providing visualization of the ignition dynamics and a detailed statistical evaluation of ignition heights and ignition delay times across a broad parameter space which includes variations in fuel type, dilution levels, coflow temperature, and coflow oxidizer content. The auto-ignition location and ignition delay times show a strong sensitivity to coflow temperature with increased sensitivities at lower coflow temperatures. Comparisons between kernel formation location for the transient jet and the fluctuating flame base of the subsequent, steady-state flame is presented, highlighting the role of flame propagation on flame stabilization. Results indicate that at lower temperatures the flame stabilization mechanism is dominated by auto-ignition, but at higher coflow temperatures, flame propagation plays a key role. The effects of variations in the hot, coflow oxidizer content on ignition properties were found to be noticeable, but still significantly less than variations in the temperature.  相似文献   

11.
A knowledge of flame stability regimes in the presence of cylindrical bluff-bodies of various dimensions is essential to design non-premixed burners. The reacting flow field in such cases is reported to be three-dimensional and unsteady. In the literature, only a few experimental investigations with limited measurements are available. Therefore, in this work, a detailed numerical study of laminar cross-flow non-premixed methane–air flames in the presence of a square cylinder is presented. The flow, temperature, species and reaction fields have been predicted using a comprehensive transient three-dimensional reacting flow model with detailed chemical kinetics and variable thermo-physical properties, in order to get a good insight into the flame stabilisation phenomena. Further, analyses of quantities such as local equivalence ratio, cell Damköhler number, species velocity, net consumption rate of methane, which are not easily obtained through experiments even with detailed diagnostics, have been carried out. The influence of the flow field due to varying inlet velocity of the oxidiser, in the presence of the bluff-body, on flame anchoring location has been analysed in detail. Local equivalence ratio contours obtained from non-reacting flow calculations are seen to be quite useful in analysing the mixing process and in the prediction of flame anchoring locations when the flames are not separated. Cell Damköhler number has been calculated using cell size, species velocity of the fuel, which is a derived quantity, and the net reaction rate of the fuel. The flame zone, which is customarily inferred from the contours of temperature, CO and OH, is also shown to be predicted well by the contour line corresponding to a Damköhler number equal to unity. The net reaction rate of CH4 and the net rates of two dominant reactions, which consume methane, show clearly the variation in the flame anchoring locations in these three cases. Further, the three-dimensionality of these flames are analysed by plotting the mean temperature contours in yz planes. Finally, the unsteadiness in the separated flame case is analysed.  相似文献   

12.
13.
The Eulerian Stochastic Fields (ESF) Monte Carlo method to solve the transported PDF (TPDF) equation is extended to account for differential diffusion effects by incorporating species individual molecular diffusivities. The method has been applied in Large Eddy simulation (LES) to non-piloted oxy-fuel jet flames at different Reynolds numbers experimentally investigated by Sevault et al. [1]. Due to the high H2 content in the fuel stream and CO2 in the oxidizer these flames pose new challenges to combustion modeling as the flame structures are different compared to CH4/air flames. The simulations show very good agreement with the experiments in terms of mixture fraction conditional mean values for temperature and mayor species on the fuel lean side and the reaction zone, deviations on the fuel rich side are discussed. The trend and location of localized extinction is reproduced well in the simulations, as well as differential diffusion effects in the near field. Additionally, it is shown that a neglect of differential diffusion in the combustion model leads to a lifted flame.  相似文献   

14.
Many studies have examined the stoichiometric lengths of laminar gas jet diffusion flames. However, these have emphasized normal flames of undiluted fuel burning in air. Many questions remain about the effects of fuel dilution, oxygen-enhanced combustion, and inverse flames. Thus, the stoichiometric lengths of 287 normal and inverse gas jet flames are measured for a broad range of nitrogen dilution. The fuels are methane and propane and the ambient pressure is atmospheric. Nitrogen addition to the fuel and/or oxidizer is found to increase the stoichiometric lengths of both normal and inverse diffusion flames, but this effect is small at high reactant mole fraction. This counters previous assertions that inert addition to the fuel stream has a negligible effect on the lengths of normal diffusion flames. The analytical model of Roper is extended to these conditions by specifying the characteristic diffusivity to be the mean diffusivity of the fuel and oxidizer into stoichiometric products and a characteristic temperature that scales with the adiabatic flame temperature and the ambient temperature. The extended model correlates the measured lengths of normal and inverse flames with coefficients of determination of 0.87 for methane and 0.97 for propane.  相似文献   

15.
We have studied flame propagation in a strained mixing layer formed between a fuel stream and an oxidizer stream, which can have different initial temperatures. Allowing the Lewis numbers to deviate from unity, the problem is first formulated within the framework of a thermo-diffusive model and a single irreversible reaction. A compact formulation is then derived in the limit of large activation energy, and solved analytically for high values of the Damköhler number. Simple expressions describing the flame shape and its propagation velocity are obtained. In particular, it is found that the Lewis numbers affect the propagation of the triple flame in a way similar to that obtained in the studies of stretched premixed flames. For example, the flame curvature determined by the transverse enthalpy gradients in the frozen mixing layer leads to flame-front velocities which grow with decreasing values of the Lewis numbers.

The analytical results are complemented by a numerical study which focuses on preferential-diffusion effects on triple flames. The results cover, for different values of the fuel Lewis number, a wide range of values of the Damköhler number leading to propagation speeds which vary from positive values down to large negative values  相似文献   

16.
Gradient free regime identification (GFRI) is applied to 1D Raman/Rayleigh/LIF measurements of temperature and major species from the intermediate velocity case of the Sydney piloted inhomogeneous jet flame series to better understand the structure of reaction zones and the downstream evolution of multi-regime characteristics. The GFRI approach allows local reaction zones to be detected and characterized as premixed, dominantly premixed, multi-regime, dominantly non-premixed, or non-premixed flame structures, based on flame markers (mixture fraction, chemical mode, and heat release rate) derived from the experimental data. The statistics of chemical mode zero-crossings, which mark premixed reaction zones, and the relative populations of flame structures are shown to be sensitive to the state of mixing in the near field of the flame and to the level of local extinction farther downstream. Multi-regime structures, where premixed and non-premixed reaction zones occur in close proximity and both contribute to overall heat release, account for nearly half the total population at streamwise locations within the first several jet diameters. There is a rapid transition within the near field whereby the relative population of non-premixed and dominantly non-premixed structures grows from 0.05 to nearly 0.5, and the population of premixed and dominantly premixed structures decreases correspondingly as fluid entering the reaction zone becomes progressively fuel-rich. Local extinction and re-ignition bring a resurgence in premixed-type structures, many of which occur at fuel-lean conditions. There are also modest populations of multi-regime structures, having chemical mode zero-crossings at lean conditions, which would not exist in a fully burning jet flame.  相似文献   

17.
The stability behaviour of non-premixed jet flames in a co-flowing air stream was investigated experimentally. The experimental data obtained indicate that there exists a range of co-flow velocity where two distinctly different extinction limits can occur at the same co-flow velocity depending on whether the flame is lifted or attached at ignition. Results show that co-flow velocity has a much greater effect on the blowout limits of lifted flames than on the blowoff limits of attached flames. The blowout limit of lifted flames initially increase linearly with co-flow velocity independent of nozzle diameter until a peak value is reached, after which it decreases rapidly with increasing co-flow velocity. Such behaviour appears to be governed by two different mechanisms. A model for predicting lifted flame blowout limits has been developed. It is based on the ratio of the Kolmogorov time scale and the chemical time scale as a function of a jet similarity parameter. The model was used to predict the blowout limits for methane as well as the effect of diluents in either fuel or co-flow stream. Results show very good agreement with experimental data in the current investigation.  相似文献   

18.
Conditional moment closure (CMC) predictions for a turbulent piloted jet diffusion flame of methanol in air at velocities of 66.2 and 90.3 m s?1 are presented. Predictions are compared with the experimental joint Raman-Rayleigh-LIF results of Masri et al and laminar flamelet calculations. Three comprehensive chemical mechanisms (SKELETAL, GRI-Mech and SUBGRI) are used to represent the chemistry of the methanol flame. The SKELETAL mechanism shows the best agreement among the various mechanisms employed. It is found that the SUBGRI mechanism reduces computational cost in terms of memory and CPU time without compromising results where the focus is on the main reactive chemistry.

The k-ε-g turbulence model underpredicts the rate of mixing and the predicted flames are somewhat longer than that reported by experiment. In general, the CMC predictions for conditional mean temperature and species mass fractions are very good and show qualitative agreement with experiment. At downstream locations, the overall trends of predicted temperature and species concentration levels are similar to the upstream ones with the latter showing better agreement with the conditional measured levels. CMC predictions show the same order of agreement at higher velocities.

It is believed that the discrepancies on the fuel-rich side may be due to lack of consideration of the conditional fluctuations. The absence of a radially dependent CMC formulation, excluding differential diffusion effects and the inadequacy of the chemical mechanism may also account, partly, for the degree of discrepancy in the predictions.  相似文献   

19.
Gas turbines, liquid rocket motors, and oil-fired furnaces utilize the spray combustion of continuously injected liquid fuels. In most cases, the liquid spray is mixed with an oxidizer prior to combustion, and further oxidizer is supplied from the outside of the spray to complete diffusion combustion. This rich premixed spray is called “partially premixed spray.” Partially premixed sprays have not been studied systematically although they are of practical importance. In the present study, the burning behavior of partially premixed sprays was experimentally studied with a newly developed spray burner. A fuel spray and an oxidizer, diluted with nitrogen, was injected into the air. The overall equivalence ratio of the spray jet was set larger than unity to establish partially premixed spray combustion. In the present burner, the mean droplet diameter of the atomized liquid fuel could be varied without varying the overall equivalence ratio of the spray jet. Two combustion modes with and without an internal flame were observed. As the mean droplet diameter was increased or the overall equivalence ratio of the spray jet was decreased, the transition from spray combustion only with an external group flame to that with the internal premixed flame occurred. The results suggest that the internal flame was supported by flammable mixture through the vaporization of fine droplets, and the passage of droplet clusters deformed the internal flame and caused internal flame oscillation. The existence of the internal premixed flame enhanced the vaporization of droplets in the post-premixed-flame zone within the external diffusion flame.  相似文献   

20.
This study is devoted to experimental investigation of hydrogen-combustion modes and the structure of a diffusion flame formed at a high-velocity efflux of hydrogen in air through round apertures of various diameters. The efflux-velocity range of the hydrogen jet and the diameters of nozzle apertures at which the flame is divided in two zones with laminar and turbulent flow are found. The zone with the laminar flow is a stabilizer of combustion of the flame as a whole, and in the zone with the turbulent flow the intense mixing of fuel with an oxidizer takes place. Combustion in these two zones can occur independently from each other, but the steadiest mode is observed only at the existence of the flame in the laminar-flow zone. The knowledge obtained makes it possible to understand more deeply the features of modes of microjet combustion of hydrogen promising for various combustion devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号