首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the sensitivity of the autoignition delay in reheat flames to acoustic pulsations associated with high-frequency transverse thermoacoustic oscillations. A reduced order model for the response of purely autoignition-stabilised flames to acoustic disturbances is compared with experimental observations. The experiments identified periodic flame motion associated with high-amplitude transverse limit-cycle oscillations in an atmospheric pressure reheat combustor. This flame motion was assumed to be the result of a superposition of two flame-acoustic coupling mechanisms: autoignition delay modulation by the oscillating acoustic field and displacement and deformation of the flame by the acoustic velocity. The reduced order model coupled to reaction kinetics calculations reveals that a significant portion of the observed flame motion can be attributed to autoignition delay modulation. The ignition position responds instantaneously to the acoustic pressure at the time of ignition, as observed experimentally. The model also provides insight into the importance of the history of acoustic disturbances experienced by the fuel-air mixture prior to ignition. Due to the high-frequency nature of the instability, a fluid particle can experience multiple oscillation cycles before ignition. The ignition delay responds in-phase with the net-acoustic perturbation experienced by a fluid particle between injection and ignition. These findings shed light on the underlying mechanisms of the flame motion observed in experiments and provide useful insight into the importance of autoignition delay modulation as a driving mechanism of high-frequency thermoacoustic instabilities in reheat flames.  相似文献   

2.
A generalized flame surface density modelling approach is presented to simulate the transient ignition and flame stabilization of a diesel jet flame, for which experimental data are available. The approach consists of four submodels: a mixing model, a generalized flame surface density model, a generalized progress variable model, and a chemistry model. A database containing the laminar model reaction rates per unit generalized flame surface density is generated by solving the unsteady flamelet equations. The RANS-CFD code solves for the mean flame surface density and mean progress variable. The coupling of the models is done via the progress variable and the scalar dissipation rate. The proposed approach is found to be adapted to simulate such a lifted flame and yields good trend agreement for ignition delay and flame lift-off vs. liquid penetration. These first promising results are encouraging to further explore and to apply this method to a more industrial configuration such as a diesel engine.  相似文献   

3.
Phenomena such as flame propagation, flame/spray interaction and flame stabilization during the transient ignition process in a cryogenic model rocket combustor are investigated on sub-millisecond time scale. Diagnostic techniques developed to characterize the stationary spray flame are applied to investigate the transient evolution of the LOX-spray and the flame front during the ignition process. Ignition is initiated by focusing a pulsed laser into the combustion chamber. Thus, ignition time as well as the position of ignition is well defined. This and the exact control of the delay between ignition and detection time allowed the observation of the evolution of the flame front. The distribution of the liquid oxygen phase and the velocity of LOX droplets and ligaments are determined by light sheet techniques using a double-pulsed laser system. Simultaneously the position of the flame front is measured by recording the spontaneous emission of the OH-radical. By varying the delay timet between ignition and detection in a series of test runs, the transient ignition phenomena has been investigated in the interval from 0 to 5 ms after ignition.  相似文献   

4.
Experiments and theoretical analysis are presented to clarify the effect of geometrical parameters on thermo-acoustic instability of downward propagating flames in tubes. The experiments reveal that the longer tubes have higher instability compared to shorter tubes and the lower diameter tubes have higher instability compared to higher diameter tubes. The secondary instability leading to turbulent burning is found to be more sensitive to change in geometrical parameters compared to primary instability (oscillating flat flame). The secondary instability is re-stabilized for some intermediate burning velocity conditions even though lower and higher burning velocity conditions show secondary instability. The appearance of such re-stabilization is only observed for some specific lengths of the tube. Present experimental observations pertaining to the effect of geometrical parameters is found to be contradicting the theoretical predictions based on pressure coupling mechanism. To clear the underlying mechanism, analytical growth rate is computed considering velocity coupling mechanism. The computed growth rates correctly predict the effect of geometrical parameters on thermo-acoustic instability of downward propagating flames. This work provides further evidence to believe that the flame -acoustic coupling in downward propagating flames is due to flame area modulation (leading to heat release modulation) through action of acoustic acceleration.  相似文献   

5.
In this work, the first flamelet analysis is conducted of a highly resolved DNS of a multi-injection flame with both auto-ignition and ignition induced by flame-flame interaction. A novel method is proposed to identify the different combustion modes of ignition processes using generalized flamelet equations. The state-of-the-art DNS database generated by Rieth et al. (US National Combustion Meeting, 2019) for a multi-injection flame in a Diesel engine environment is investigated. Three-dimensional flamelets are extracted from the DNS at different time instants with a focus on auto-ignition and interaction-ignition processes. The influences of mixture field interactions and the scalar dissipation rate on the ignition process are investigated by varying the species composition boundary conditions of the transient flamelet equations. Budget analyses of the generalized flamelet equations show that the transport along the mixture fraction iso-surface is insignificant during the auto-ignition process, but becomes important when interaction-ignition occurs, which is further confirmed through a flamelet regime classification method.  相似文献   

6.
Laser-based imaging of fuel vapor distribution, ignition, and soot formation in diesel sprays was carried out in a high-pressure, high-temperature spray chamber under conditions that correspond to temperature and pressure in a diesel engine. Rayleigh scattering and laser-induced incandescence are used to image fuel density and soot volume fraction. The experimental results provide data for comparison with numerical simulations. An interactive cross-sectionally averaged spray model based on Eulerian transport equations was used for the simulation of the spray, and the turbulence-chemistry interaction was modeled with the representative interactive flamelet (RIF) concept. The flamelet calculation is coupled to the Kiva3V computational fluid dynamics (CFD) code using the scalar dissipation rate and pressure as an input to the RIF-code. The flamelet code computes the instationary flamelet profiles for every time step. These profiles were integrated over mixture fraction space using a prescribed β-PDF to obtain mean values, which are passed back to the CFD-code. Thereby, the temperature and the relevant species in each CFD-cell were obtained. The fuel distribution, the average ignition delay as well as the location of ignition are well predicted by the simulation. Furthermore, simulations show that the experimentally observed injection-to-injection variations in ignition delay are due to temperature inhomogeneities. Experimental and simulated spatial soot and fuel vapor density distributions are compared during and after second stage ignition.  相似文献   

7.
In the current study, the auto-ignition dynamics of cold fuel jets issuing into a high-temperature, vitiated environments is investigated. Due to the short time scale of these events, high-speed measurements are used to resolve the coupled spatio-temporal behavior. The present study uses high-speed (20-kHz) OH* chemiluminescence imaging to identify the location and timing of the formation of the initial ignition kernels, providing visualization of the ignition dynamics and a detailed statistical evaluation of ignition heights and ignition delay times across a broad parameter space which includes variations in fuel type, dilution levels, coflow temperature, and coflow oxidizer content. The auto-ignition location and ignition delay times show a strong sensitivity to coflow temperature with increased sensitivities at lower coflow temperatures. Comparisons between kernel formation location for the transient jet and the fluctuating flame base of the subsequent, steady-state flame is presented, highlighting the role of flame propagation on flame stabilization. Results indicate that at lower temperatures the flame stabilization mechanism is dominated by auto-ignition, but at higher coflow temperatures, flame propagation plays a key role. The effects of variations in the hot, coflow oxidizer content on ignition properties were found to be noticeable, but still significantly less than variations in the temperature.  相似文献   

8.
The ignition and combustion processes of transient turbulent methane jets under high-pressure and moderate temperature conditions were simulated using a computationally efficient combustion model. Closure for the mean chemical source-terms was obtained with Conditional Source-term Estimation (CSE) using first conditional moment closure in conjunction with a detailed chemical kinetic mechanism, which was reduced to a Trajectory-Generated Low-Dimensional Manifold (TGLDM). The accuracy of the manifold was first validated against the direct integral method by comparing the predicted reactive scalar profiles in three methane–air reaction systems: a laminar premixed flame, a laminar flamelet and a perfectly stirred reactor. Detailed CFD simulations incorporating the CSE-TGLDM model were able to provide reasonably good predictions of the experimental ignition delay and initial ignition kernel locations of the methane jets reported in the literature with relatively low computational cost. Nitrogen oxides formed in the methane jet flame were found to be underpredicted by the model by as much as a factor of 2. The discrepancy may be attributable to the inability of the simulation to account for the effects of the rarefaction wave in the shock-tube experiments.  相似文献   

9.
Turbulent premixed flames often experience thermoacoustic instabilities when the combustion heat release rate is in phase with acoustic pressure fluctuations. Linear methods often assume a priori that oscillations are periodic and occur at a dominant frequency with a fixed amplitude. Such assumptions are not made when using nonlinear analysis. When an oscillation is fully saturated, nonlinear analysis can serve as a useful avenue to reveal flame behaviour far more elaborate than period-one limit cycles, including quasi-periodicity and chaos in hydrodynamically or thermoacoustically self-excited system. In this paper, the behaviour of a bluff-body stabilised turbulent premixed propane/air flame in a model jet-engine afterburner configuration is investigated using computational fluid dynamics. For the frequencies of interest in this investigation, an unsteady Reynolds-averaged Navier–Stokes approach is found to be appropriate. Combustion is represented using a modified laminar flamelet approach with an algebraic closure for the flame surface density. The results are validated by comparison with existing experimental data and with large eddy simulation, and the observed self-excited oscillations in pressure and heat release are studied using methods derived from dynamical systems theory. A systematic analysis is carried out by increasing the equivalence ratio of the reactant stream supplied to the premixed flame. A strong variation in the global flame structure is observed. The flame exhibits a self-excited hydrodynamic oscillation at low equivalence ratios, becomes steady as the equivalence ratio is increased to intermediate values, and again exhibits a self-excited thermoacoustic oscillation at higher equivalence ratios. Rich nonlinear behaviour is observed and the investigation demonstrates that turbulent premixed flames can exhibit complex dynamical behaviour including quasiperiodicity, limit cycles and period-two limit cycles due to the interactions of various physical mechanisms. This has implications in selecting the operating conditions for such flames and for devising proper control strategies for the avoidance of thermoacoustic instability.  相似文献   

10.
The effect of inlet swirl on the flow development and combustion dynamics in a lean-premixed swirl-stabilized combustor has been numerically investigated using a large-eddy-simulation (LES) technique along with a level-set flamelet library approach. Results indicate that when the inlet swirl number exceeds a critical value, a vortex-breakdown-induced central toroidal recirculation zone is established in the downstream region. As the swirl number increases further, the recirculation zone moves upstream and merges with the wake recirculation zone behind the centerbody. Excessive swirl may cause the central recirculating flow to penetrate into the inlet annulus and lead to the occurrence of flame flashback. A higher swirl number tends to increase the turbulence intensity, and consequently the flame speed. As a result, the flame surface area is reduced. The net heat release, however, remains almost unchanged because of the enhanced flame speed. Transverse acoustic oscillations often prevail under the effects of strong swirling flows, whereas longitudinal modes dominate the wave motions in cases with weak swirl. The ensuing effect on the flow/flame interactions in the chamber is substantial.  相似文献   

11.
高氧气浓度甲烷不稳定燃烧实验研究   总被引:1,自引:0,他引:1  
采用无回火的急速混合管状燃烧技术,以二氧化碳和氧气的混合气体为氧化剂,基于CH~*自发光高速摄影图像及同步声压曲线,分析氧气浓度β=0.67的甲烷富氧燃烧特性。研究发现当量比0.6~1.0之间的火焰结构呈周期性变化,其频率与燃烧室内声压振荡频率一致,均为高频振荡。分析结果表明,燃烧器内的富氧燃烧振荡模式属于轴向声学共振。混合气体当量比由0.6增至1.0,热释率提高,热释率脉动与声压耦合增强,低频声压幅值减小,高频声压幅值增大,低频振动能量向高频振动能量转变,频谱特性由具有两个特征频率的周期性振荡转变为只有一个高频的周期振荡燃烧。  相似文献   

12.
An experimental study focusing on the temporal evolution of the global OH heat release (q′) and dynamic pressure (p′) from ignition to limit cycle conditions in an aerovalved pulse combustor has been carried out. The motivation of the work was to investigate how the thermo-acoustic relationships evolve, as very little is understood regarding how pressure and heat release couplings develop prior to establishing limit cycle conditions. The start-up experiments demonstrated that the total start-up sequences occurred within 100 ms and can be subdivided into three regimes: (i) ignition and decay; (ii) instability growth; and (iii) onset of limit cycle operation. The main results showed that upon ignition the high amplitude impulse pressure wave corresponded to the natural frequency of the pulse combustor at ambient gas temperature and was verified by an acoustic model. The pressure field over the growth period exhibited two main trends, either steady amplitude growth or a short delay interval followed by steady amplitude growth to limit cycle conditions. Overall, no reproducibility in frequency or phase during the growth period was observed pointing to the influence of strong non-linear interactions. When operating under limit cycle conditions, the heat release and pressure oscillations were in phase, possessed high levels of coherence, and exhibited narrow band frequency response at the operating frequency and several harmonics.  相似文献   

13.
In this paper we investigate self-excited azimuthal modes in an annular combustor with turbulent premixed bluff-body stabilised flames. Previous studies have shown that both swirl and equivalence ratio influence modal dynamics, i.e. the time-varying nature of the modes. However, self-excited azimuthal modes have not yet been investigated in turbulent flames without bulk swirl, which do not generate any preferential flow in either azimuthal direction, and may therefore lead to different behaviour. Joint probability density functions of the instability amplitudes at various flowrates and equivalence ratios showed a strong bi-modal response favouring both ACW and CW spinning states not previously observed. Operating conditions leading to a bi-modal response provide a unique opportunity to investigate whether the structure of the global fluctuating heat release rate of self-excited spinning modes in both directions exhibit similar dynamics and structure. This was investigated using high-speed OH* chemiluminescence images of the annular combustor and a new rotational averaging method was applied which decomposes the spinning components of the global fluctuating heat release rate. The new rotational averaging, which differs from standard phase-averaging, produces spatial averages in a frame of reference moving with the spinning wave. The results show that the structure of the fluctuating heat release rate for spinning modes is highly asymmetric as characterised by large, crescent shaped regions of high OH* intensity, located on the far side of each flame, relative to the direction of the azimuthally propagating pressure wave. In comparison with interacting swirling flames, these results indicate that the previously observed radial asymmetry of OH* fluctuations may be introduced through advection by local swirl.  相似文献   

14.
Based on the energy conservation relationship,nonlinear thermo-acoustic effects of Rijke tube including instability range,saturation processes and higher harmonics modes were investigated.With coupling between the external flow and the inner space of a Rijke tube, the acoustic characteristics of self-excited oscillation were simulated.The experimental study was also carried out and the results were compared with those from simulation.The nonlinear factors which distort the acoustic waveform distortion were analyzed.From the results,it is seen that varying size of the nozzle outlet changes the acoustic impedance in the boundary, and leads to reduction of the nonlinear effects.The results show that the modes of self-excited oscillation could be influenced by the position of higher harmonics.In the large amplitude oscillation,the distortion of pressure wave within Rijke tube could be induced by the acoustic losses due to vortices on nozzle.It is found that the waveform distortion could be avoided by the shrinkage of nozzle.  相似文献   

15.
Understanding and characterizing ignition of flammable mixtures by hot particles is important for assessing and reducing the risk of accidental ignition and explosion in industry and aviation. Recently, many studies have been conducted for ignition of gaseous mixtures by hot particles. However, the effects of low-temperature chemistry (LTC) on ignition by hot particles received little attention. LTC plays an important role in the ignition of most hydrocarbon fuels and may induce cool flames. The present study aims to numerically assess the effects of LTC on ignition by the hot particles. We consider the transient ignition processes induced by a hot spherical particle in quiescent and flowing stoichiometric dimethyl ether/air mixtures. 1D and 2D simulations, respectively, are conducted for the ignition process by hot-particles in quiescent and flowing mixtures. A detailed kinetic model including both LTC and high-temperature chemistry (HTC) is used in simulations. The results exhibit a premixed cool flame to be first initiated by the hot particle. Then a double-flame structure with both premixed cool and hot flames is observed at certain conditions. At zero or low inlet flow velocities, the hot flame catches up and merges with the leading cool flame. At high inlet flow velocities, the hot flame cannot be initiated due to the short residence time and large convective loss of heat and radicals. Comparing the results with and without considering LTC confirms that LTC accelerates substantially ignition via HTC in a certain range of hot particle temperatures. The mechanism of ignition promotion by LTC is interpreted by analyzing the radical pool produced by the LTC and HTC surrounding the hot particle. Moreover, the influence of inlet flow velocity on ignition by hot particles is assessed. Non-monotonic change of ignition delay time with flow velocity is observed and discussed.  相似文献   

16.
17.
小火焰模型在贫燃预混火焰中的研究   总被引:4,自引:0,他引:4  
由层流小火焰库引入详细化学反应机理,通过简化的PDF方法计算组分浓度、平均温度和密度等变量,以钝体火焰稳定燃烧室和某燃气轮机上的燃烧室为例,模拟甲烷/空气贫燃条件下预混燃烧的平均火焰位置和火焰厚度,计算结果与实验结果吻合良好,这表明此方法能够较好计算出平均湍流火焰的主要特征。  相似文献   

18.
Hydrogen combustion has emerged as one promising option toward the achievement of carbon-neutral in aviation. In this study, the effects of hydrogen addition on laminar flame speeds, autoignition, and the coupling of autoignition and flame propagation for surrogate jet fuel n-dodecane are numerically investigated at representative engine conditions to elucidate the potential challenges for flame stabilization and the autoignition risks in combustor design. Results show that the normalized flame speed increases almost linearly with hydrogen addition for fuel-lean conditions, while for fuel-rich conditions it increases nonlinearly and can be up to 20. This poses great challenges for avoiding flameholding and flashback, particularly for fuel-rich mixtures. Results further show that flame speed enhancement due to the increased flame temperature can be neglected under fuel-lean conditions, but not for fuel-rich mixtures. For the dependence of ignition delay time on temperature, there exists a unique intersection between pure n-dodecane/air and H2/air mixtures. Near the intersection temperature, there exists subtle kinetic coupling of the two fuels, leading to different H2 roles, e.g., accelerator or inhibitor, for the autoignition process of n-dodecane/H2/air mixtures. With this intersection temperature, the diagram for autoignition risks is constructed, which demonstrates that H2 acts as an inhibitor under subsonic cruise conditions while either an inhibitor or an accelerator under supersonic cruise conditions depending on the combustor inlet temperature and the amount of hydrogen addition. With the potential coupling of autoignition and flame propagation, the 1-D autoignition-assisted flame calculations show that hydrogen addition can alleviate or even eliminate the two-stage ignition characteristics for pure n-dodecane/air flames. For n-dodecane blended with hydrogen, the autoignition-assisted flame propagation speed, as well as the global transition from flame propagation to autoignition, can still be described by an analytic scaling parameterized by the ignition Damkӧhler number.  相似文献   

19.
Three-dimensional (3D) unsteady Reynolds-averaged Navier–Stokes simulations of a spark-ignited turbulent methane/air jet flame evolving from ignition to stabilisation are conducted for different jet velocities. A partially premixed combustion model is used involving a correlated joint probability density function and both premixed and non-premixed combustion mode contributions. The 3D simulation results for the temporal evolution of the flame's leading edge are compared with previous two-dimensional (2D) results and experimental data. The comparison shows that the final stabilised flame lift-off height is well predicted by both 2D and 3D computations. However, the transient evolution of the flame's leading edge computed from 3D simulation agrees reasonably well with experiment, whereas evident discrepancies were found in the previous 2D study. This difference suggests that the third physical dimension plays an important role during the flame transient evolution process. The flame brush's leading edge displacement speed resulting from reaction, normal and tangential diffusion processes are studied at different typical stages after ignition in order to understand the effect of the third physical dimension further. Substantial differences are found for the reaction and normal diffusion components between 2D and 3D simulations especially in the initial propagation stage. The evolution of reaction progress variable scalar gradients and its interaction with the flow and mixing field in the 3D physical space have an important effect on the flame's leading edge propagation.  相似文献   

20.
Laminar premixed cool flames, induced by the coupling of low-temperature chemistry and convective-diffusive transport process, have recently attracted extensive interest in combustion and engine research. In this work, numerical simulations have been conducted using a recently developed open-source reacting flow platform reactingFOAM-SCT, to investigate the minimum ignition energy (MIE) and propagation dynamics of premixed cool flames in a 1D spherical coordinate. Results have shown that when ignition energy is below the MIE of regular hot flames, a class of cool flames could be initiated, which allow much wider flammability limits, both lean and rich, compared to hot flames. Furthermore, the overall cool flame propagation dynamics exhibit intrinsic similarity to those of hot flames, in that, they begin with an ignition kernel propagation regime, followed by two transition regimes, and eventually reach a normal flame propagation regime. However, a spherical expanding cool flame responds completely differently to stretch. Specifically, a regular outwardly propagating hot spherical flame accelerates with increasing stretch rate when the mixture Le < 1 and decelerates when Le > 1. However, it is found that a cool flame always tends to decelerate with increasing stretch rate regardless of mixture composition, exhibiting unique flame aerodynamic characteristic. This research discovers novel features of premixed cool flame initiation and propagation dynamics and sheds light on flame transition, spark-ignition system design, and advanced engine combustion control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号