首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, a novel model for the analysis and optimisation of numerical and experimental chemical kinetics is developed. Concentration–time profiles of non-diffusive chemical kinetic processes and flame speed profiles of fuel–oxidiser mixtures can be described by certain characteristic points, so that relations between the coordinates of these points and the input parameters of chemical kinetic models become almost linear. This linear transformation model simplifies the analysis of chemical kinetic models, hence creating a robust global sensitivity analysis and allowing quick optimisation and reduction of these models. Firstly, in this study the model is extensively validated by the optimisation of a syngas combustion model with a large data set of imitated ignition experiments. The optimisation with the linear transformation model is quick and accurate, revealing the potential for decreasing the numerical costs of the optimisation process by at least one order of magnitude compared to established methods. Additionally, the optimisation on this data set demonstrates the capability of predicting reaction rate coefficients more accurately than by currently known confidence intervals. In a first application, methane combustion models are optimised with a small experimental set consisting of OH(A) and CH(A) concentration profiles from shock tube ignition experiments, species profiles from flow reactor experiments and laminar flame speeds. With the optimised models, especially the predictability for the flame speeds of mixtures of hydrogen, carbon monoxide and methane can be increased compared to established models. With the analysis of the optimised models, new information on the low pressure reaction coefficient of the fall-off reaction H+CH3(+M)?CH4(+M) is determined. In addition, the optimised combustion model is quickly and efficiently reduced to validate a new rapid reduction scheme for chemical kinetic models.  相似文献   

2.
Synchrotron-based molecular-beam mass spectrometry (MBMS) can provide detailed species-resolved information to help develop, validate and optimize combustion kinetic models. While quantification of stable species can be achieved within 30% uncertainty, the measured mole fractions of reactive intermediates often have large systematic errors, mainly due to the large uncertainties associated with estimated photoionization cross sections. These measurements are therefore less effective in improving the model accuracy, and it remains a challenge to make full use of those data for important reactive intermediates with relatively large uncertainties. In the present work, we propose a model-assisted calibration method to reduce the uncertainty of the measurements for those reactive species in the MBMS experiments. The method takes advantage of the inherent correlation of the systematic uncertainty in the MBMS measurements and uses the accurate model predictions to calibrate the correlated experimental data. By global uncertainty analysis, the kinetic model for the methanol/O2 flame was analyzed to select the optimal experimental conditions for which the model prediction of the hydroxymethyl radical (CH2OH) has the smallest uncertainty. Then the correlation factor for the systematic uncertainty is determined by analyzing the new measurement and the model prediction under the designed condition. The correlation factor determined has been successfully used to calibrate the peak mole fraction of the CH2OH radical in a laminar premixed methanol flame, reported earlier.  相似文献   

3.
Ammonia has widely attracted interest as a potential candidate not only as a hydrogen energy carrier but also as a carbon free fuel for internal combustion engines, such as gas turbines. Because ammonia contains a nitrogen atom in its molecule, nitrogen oxides (NOx) and other pollutants may be formed when it burns. Therefore, understanding the fundamental product gas characteristics of ammonia/air laminar flames is important for the design of ammonia-fueled combustors to meet stringent emission regulations. In this study, the product gas characteristics of ammonia/air premixed laminar flames for various equivalence ratios were experimentally and numerically investigated up to elevated pressure conditions. In the experiments, a stagnation flame configuration was employed because an ammonia flame can be stabilized by using such a configuration without a pilot flame. The experimental results showed that the maximum NO mole fraction was about 3,500 ppmv, at an equivalence ratio of 0.9 at 0.1 MPa. The NO mole fraction decreased as the equivalence ratio increased. In addition, the maximum value of the NO mole fraction decreased with an increase in mixture pressure. Furthermore, it was experimentally clarified that the simultaneous reduction of NO and unburnt ammonia can be achieved at an equivalence ratio of about 1.06, which is the target equivalence ratio for emission control in rich-lean two-stage ammonia combustors. Comparison of experimental and numerical results showed that even though the reaction mechanisms employed have been optimized for predicting the laminar burning velocity of ammonia/air flames, they failed to satisfactorily predict the measured species in this study. Sensitivity analysis was used to identify elementary reactions that control the species profiles but have negligible effects on the burning velocity. It is considered that these reaction models need to be updated for accurate prediction of product gas characteristics of ammonia/air flames.  相似文献   

4.
A detailed kinetic model is proposed for the combustion of normal alkanes up to n-dodecane above 850 K. The model was validated against experimental data, including fuel pyrolysis in plug flow and jet-stirred reactors, laminar flame speeds, and ignition delay times behind reflected shock waves, with n-dodecane being the emphasis. Analysis of the computational results reveal that for a wide range of combustion conditions, the kinetics of fuel cracking to form smaller molecular fragments is fast and may be decoupled from the oxidation kinetics of the fragments. Subsequently, a simplified model containing a minimal set of 4 species and 20 reaction steps was developed to predict the fuel pyrolysis rate and product distribution. Combined with the base C1-C4 model, the simplified model predicts fuel pyrolysis rate and product distribution, laminar flame speeds, and ignition delays as close as the detailed reaction model.  相似文献   

5.
Laminar flame speeds of 2,4,4-trimethyl-1-pentene are investigated at equivalence ratios of 0.7–1.6, initial temperatures of 298–453 K and initial pressures of 0.1–0.5 MPa. The comparison between 2,4,4-trimethyl-1-pentene and iso-octane is also performed. Results show that 2,4,4-trimethyl-1-pentene has faster laminar flame speed than iso-octane. Chemical kinetic models (Metcalfe model, Modified model I) were tested against the present experimental data. The laminar flame speeds are apparently over-estimated by the Metcalfe model and under-predicted by the Modified model I. Therefore, high-level quantum mechanical calculations were used to revise the Modified model I to obtain Modified model II and it can give fairly good prediction at various conditions on laminar flame speeds. In addition, the chemical kinetic analysis was conducted. The analysis indicates both thermal and kinetic effects result in the discrepancy of laminar flame speeds between 2,4,4-trimethyl-1-pentene and iso-octane. Furthermore, IC4H8 plays a dominant role in laminar flame speeds of 2,4,4-trimethyl-1-pentene and iso-octane.  相似文献   

6.
This paper presents an assessment of Large Eddy Simulations (LES) in calculating the structure of turbulent premixed flames propagating past solid obstacles. One objective of the present study is to evaluate the LES simulations and identify the drawbacks in accounting the chemical reaction rate. Another objective is to analyse the flame structure and to calculate flame speed, generated overpressure at different time intervals following ignition of a stoichiometric propane/air mixture. The combustion chamber has built-in repeated solid obstructions to enhance the turbulence level and hence increase the flame propagating speed. Various numerical tests have also been carried out to determine the regimes of combustion at different stages of the flame propagation. These have been identified from the calculated results for the flow and flame characteristic parameters. It is found that the flame lies within the ‘thin reaction zone’ regime which supports the use of the laminar flamelet approach for modelling turbulent premixed flames. A submodel to calculate the model coefficient in the algebraic flame surface density model is implemented and examined. It is found that the LES predictions are slightly improved owing to the calculation of model coefficient by using submodel. Results are presented and discussed in this paper are for the flame structure, position, speed, generated pressure and the regimes of combustion during all stages of flame propagation from ignition to venting. The calculated results are validated against available experimental data.  相似文献   

7.
Radiation heat loss introduces one of the main uncertainties associated with the determination of laminar flame speeds from experiments using the spherically expanding flame constant volume method. In this study, a radiation model was developed to solve for the volumetric radiative power in spherical geometry using discrete transfer method accounting for spectrally dependent emission and absorption. The model was validated against the results obtained from the discrete ordinate method. Subsequently, the newly developed radiation model was integrated into a hybrid thermodynamic-radiation model used to derive laminar flame speeds from experimental pressure-time history data. Laminar flame speeds were measured for flames of C5C10 n-alkanes and isooctane for pressure and unburned mixture temperature ranges of 13–25 atm and 540 – 670 K respectively, and the data are reported with properly derived uncertainties. Additionally, the data are free from measurable instability-induced effects and to assure that a systematic analysis of cell formation was undertaken. Comparison of the experimental data with predicted laminar flame speeds showed consistency and reasonable agreement with two kinetic models. The development of new modeling tools over the last few years, allows for the derivation of accurate laminar flame speeds using the spherically expanding flame constant volume method for engine-relevant fuels and thermodynamic conditions, which other methods cannot accommodate.  相似文献   

8.
Combustion plays an important role in a wide variety of industrial applications, such as gas-turbines, furnaces, spark-ignition engines, and various air-breathing engines. The ability to predict and understand the behavior of reacting flows in practical devices is fundamental to improved combustors with higher efficiency and reduced levels of emissions. At present, large eddy simulation is considered the most promising approach for premixed combustion modeling since the large-scale energy containing flow structures are resolved on the grid. However, the typically thin reaction zone cannot be resolved. To overcome this difficulty flamelet models, in which the reaction is assumed to take place in thin layers, wrinkled by the turbulence can sometimes be used. In these models, the turbulent flame speed can be represented as the product of the laminar flame speed, Su, corrected for the effects of stretch (strain and curvature) and the flame-wrinkling, Ξ. In this study, we propose to model Ξ using fractal theory. This model requires sub-models for the fractal dimension, and the inner and outer cut-offs—the latter being set by the grid. A model is proposed for the inner cut-off, whereas an empirical parameterization is used to provide the fractal dimension. The proposed model is applied to flame kernel growth in homogeneous isotropic turbulence in a fan-stirred bomb and to a lean premixed flame in a plane symmetric dump combustor. Good qualitative and quantitative agreement with experimental data were obtained for the proposed model in both cases. Comparison with other well-known turbulent flame speed closure models shows that the proposed model behaves at least as good, or even better, than the reference models.  相似文献   

9.
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.  相似文献   

10.
This study concerns the numerical simulation of turbulent non-premixed combustion in highly preheated air streams. One of the objectives is to settle an efficient computational procedure to proceed with the numerical simulation of large-scale industrial devices. It is also expected that the availability of such a computational framework may facilitate comprehensive sensitivity analyses as well as the development of mathematical models able to represent turbulence-chemistry interactions (TCI) in such conditions. Based on the salient physical ingredients that characterise scalar mixing, propagation, and self-ignition processes, a turbulent combustion modelling framework is thus introduced and applied to the numerical simulation of well-documented laboratory flames. In the corresponding geometries, the bulk flow velocities of the reactants streams can reach rather large values, which lead the flame to lift from the burner rim. Partially premixed flame edges thus stabilise the whole flame structure and the temperature of the oxidising stream can be increased by vitiation with burned gases so as to promote the corresponding flame-stabilisation processes. For sufficiently large values of the vitiated airstream temperature, self-ignition mechanisms may be triggered thus leading to a competition between mixing, propagation, and ignition processes. In this context, the ratio of the residence time to the self-ignition delay is thought to be a relevant variable to delineate the possible influence of ignition phenomena. Therefore, a modelled transport equation for this normalised residence time is considered. The performance of the corresponding modelling proposal is analysed with special emphasis placed on its ability to reproduce ‘memory’ or ‘lagrangian’ effects related to thermal aging processes. In this respect, it is noteworthy that the present set of computations makes use of tabulated quantities associated to (i) steady laminar one-dimensional diffusion flamelets, so as to describe the composition of combustion products, (ii) steady laminar one-dimensional premixed flamelets, to describe the flame brush propagation, and (iii) temporal evolution of zero-dimensional homogeneous mixtures to account for the possible occurrence of self-ignition phenomena. In particular, the tabulated self-ignition time value is used to evaluate the increase in the normalised residence time. Finally, two modelling parameters are put into evidence and studied through a detailed sensitivity analysis.  相似文献   

11.
Collisional energy transfer plays a pivotal role in a-priori calculations of the pressure-dependent rate constants obtained from a master equation. However, accurate determinations of collisional energy transfer parameters are rare and so most kinetic studies rely on best-fits of these parameters to experimental measurements (if available) or estimates guided from literature studies. In this work, we have quantified the effect of the uncertainty in energy transfer parameters on the thermal and prompt dissociation kinetics of a resonance stabilized radical, 1-methyl allyl (1MA), of relevance to the combustion of 1- and 2-butene isomers. Simulations using literature kinetics models were performed to assess the impact of these uncertainties on flame propagation and speciation data in laminar flames of 1- and 2-butene. Analyses of the uncertainty propagated by the energy transfer parameters for 1MA dissociation to the flame simulations, in particular the laminar flame speed, indicate an intricate coupling between the kinetics of 1MA dissociation (chain propagation) and its reaction with H-atoms (chain-termination). Ab-initio based theoretical calculations were also performed to obtain pressure-dependent kinetics for the reaction of 1MA with H-atoms. Lastly, theoretically calculated energy transfer parameters were used to best characterize the kinetics and branching between the chain propagating 1MA dissociation and the chain-terminating reaction 1MA + H.  相似文献   

12.
To improve our understanding of the combustion characteristics of propyne, new experimental data for ignition delay times (IDTs), pyrolysis speciation profiles and flame speed measurements are presented in this study. IDTs for propyne ignition were obtained at equivalence ratios of 0.5, 1.0, and 2.0 in ‘air’ at pressures of 10 and 30 bar, over a wide range of temperatures (690–1460 K) using a rapid compression machine and a high-pressure shock tube. Moreover, experiments were performed in a single-pulse shock tube to study propyne pyrolysis at 2 bar pressure and in the temperature range 1000–1600 K. In addition, laminar flame speeds of propyne were studied at an unburned gas temperature of 373 K and at 1 and 2 bar for a range of equivalence ratios. A detailed chemical kinetic model is provided to describe the pyrolytic and combustion characteristics of propyne across this wide-ranging set of experimental data. This new mechanism shows significant improvements in the predictions for the IDTs, fuel pyrolysis and flame speeds for propyne compared to AramcoMech3.0. The improvement in fuel reactivity predictions in the new mechanism is due to the inclusion of the propyne + H?2 reaction system along with ?H radical addition to the triple bonds of propyne and subsequent reactions.  相似文献   

13.
Autoignition risk in initially non-premixed flowing systems, such as premixing ducts, must be assessed to help the development of low-NOx systems and hydrogen combustors. Such situations may involve randomly fluctuating inlet conditions that are challenging to model in conventional mixture-fraction-based approaches. A Computational Fluid Dynamics (CFD)-based surrogate modelling strategy is presented here for fast and accurate predictions of the stochastic autoignition behaviour of a hydrogen flow in a hot air turbulent co-flow. The variability of three input parameters, i.e., inlet fuel and air temperatures and average wall temperature, is first sampled via a space-filling design. For each sampled set of conditions, the CFD modelling of the flame is performed via the Incompletely Stirred Reactor Network (ISRN) approach, which solves the reacting flow governing equations in post-processing on top of a Large Eddy Simulation (LES) of the inert hydrogen plume. An accurate surrogate model, namely a Gaussian Process, is then trained on the ISRN simulations of the burner, and the final quantification of the variability of autoignition locations is achieved by querying the surrogate model via Monte Carlo sampling of the random input quantities. The results are in agreement with the observed statistics of the autoignition locations. The methodology adopted in this work can be used effectively to quantify the impact of fluctuations and assist the design of practical combustion systems.  相似文献   

14.
Spark ignition engines are one of the main technologies in the transport sector. The improvement and optimization of the fuels used to empower these engines are of vital importance, both for economic and environmental reasons. In particular, one of the main issues of spark ignition engines is the knock phenomenon; new formulations of fuels are being studied in order to overcome this problem. In this study, a possible innovative anti-knock, octane booster additive is considered: ethyl lactate. This molecule is almost unknown in combustion literature, as it has been used only as green solvent and food additive. The first experimental results under combustion conditions are presented, together with a kinetic mechanism. Two set-ups have been employed: a rapid compression machine, to measure ignition delay times, and an innovative spherical bomb, OPTIPRIME, to obtain laminar flame speeds. The results are encouraging for the expected application and the mechanism shows good performance. Ignition delay times at all conditions are well predicted by the mechanism and, when compared to ethanol, they are longer, implying a greater anti-knock capability. A rate of production analysis has been performed, where the unimolecular reaction leading to ethylene and lactic acid has been proved to be quite important at high temperatures and lean conditions. For laminar flame speeds, the agreement between model and experiments is good, with some discrepancies at lean conditions and high pressures. Compared to ethanol, at rich and stoichiometric conditions ethyl lactate flame speeds are slightly slower except at lean conditions, indicating that under some conditions this molecule could provide better performances than ethanol as an octane booster additive.  相似文献   

15.
基于各向异性非结构网格生成技术, 开发了面向复杂几何和复杂湍流燃烧问题的自适应求解算法, 并进行了程序代码的可靠性验证工作, 展示了各向异性网格自适应算法在降低问题求解规模、提高火焰面和流场计算精度等方面的优势.应用该自适应求解技术准确捕捉到了一维预混层流火焰、二维对冲火焰和三维本生灯湍流火焰的流场信息, 火焰面附近的温度、速度、组分等物理量与实验值吻合很好.对一款富油-快速混合-贫油(rich-burn, quick-mix, lean-burn, RQL)低排放发动机燃烧室进行了计算分析, 发现了燃烧室内的热声不稳定现象.   相似文献   

16.
Numerical modeling is an attractive option for cost-effective development of new high-efficiency, soot-free combustion devices. However, the inherent complexities of hydrocarbon combustion require that combustion models rely heavily on engineering approximations to remain computationally tractable. More efficient numerical algorithms for reacting flows are needed so that more realistic physics models can be used to provide quantitative soot predictions. A new, highly-scalable combustion modeling tool has been developed specifically for use on large multiprocessor computer architectures. The tool is capable of capturing complex processes such as detailed chemistry, molecular transport, radiation, and soot formation/destruction in laminar diffusion flames. The proposed algorithm represents the current state of the art in combustion modeling, making use of a second-order accurate finite-volume scheme and a parallel adaptive mesh refinement (AMR) algorithm on body-fitted, multiblock meshes. Radiation is modeled using the discrete ordinates method (DOM) to solve the radiative transfer equation and the statistical narrow-band correlated-k (SNBCK) method to quantify gas band absorption. At present, a semi-empirical model is used to predict the nucleation, growth, and oxidation of soot particles. The framework is applied to two laminar coflow diffusion flames which were previously studied numerically and experimentally. Both a weakly-sooting methane–air flame and a heavily-sooting ethylene–air flame are considered for validation purposes. Numerical predictions for these flames are verified with published experimental results and the parallel performance of the algorithm analyzed. The effects of grid resolution and gas-phase reaction mechanism on the overall flame solutions were also assessed. Reasonable agreement with experimental measurements was obtained for both flames for predictions of flame height, temperature and soot volume fraction. Overall, the algorithm displayed excellent strong scaling performance by achieving a parallel efficiency of 70% on 384 processors. The proposed algorithm proved to be a robust, highly-scalable solution method for sooting laminar flames.  相似文献   

17.
Ammonia appears a promising hydrogen-energy carrier as well as a carbon-free fuel. However, there remain limited studies for ammonia combustion especially under turbulent conditions. To that end, using the spherically expanding flame configuration, the turbulent flame speeds of stoichiometric ammonia/air, ammonia/methane and ammonia/hydrogen were examined. The composition of blends studied are currently being investigated for gas turbine application and are evaluated at various turbulent intensities, covering different kinds of turbulent combustion regimes. Mie-scattering tomography was employed facilitating flame structure analysis. Results show that the flame propagation speed of ammonia/air increases exponentially with increasing hydrogen amount. It is less pronounced with increasing methane addition, analogous to the behavior displayed in the laminar regime. The turbulent to laminar flame speed ratio increases with turbulence intensity. However, smallest gains were observed at highest hydrogen content, presumably due to differences in the combustion regime, with the mixture located within the corrugated flamelet zone, with all other mixtures positioned within the thin reaction zone. A good correlation of the turbulent velocity based on the Karlovitz and Damköhler numbers is observable with the present dataset, as well as previous experimental measurements available in literature, suggesting that ammonia-based fuels may potentially be described following the usual turbulent combustion models. Flame morphology and stretch sensitivity analysis were conducted, revealing that flame curvature remains relatively similar for pure ammonia and ammonia-based mixtures. The wrinkling ratio is found to increase with both increasing ammonia fraction and turbulent intensity, in good agreement with measured increases in turbulent flame speed. On the other hand, in most cases, the flame stretch effect does not change significantly with increasing turbulence, whilst following a similar trend to that of the laminar Markstein length.  相似文献   

18.
Multiple flame regimes are encountered in industrial combustion chambers, where premixed, stratified and non-premixed flame regions may coexist. To obtain a predictive tool for pollutant formation predictions, chemical flame modeling must take into account the influence of such complex flame structure. The objective of this article is to apply and compare two reduced chemistry models on both laminar and turbulent multi-regime flame configurations in order to analyze their capabilities in predicting flame structure and CO formation. The challenged approaches are (i) a premixed flamelet-based tabulated chemistry method, whose thermochemical variables are parameterized by a mixture fraction and a progress variable, and (ii) a virtual chemical scheme which has been optimized to retrieve the properties of canonical premixed and non-premixed 1-D laminar flames. The methods are first applied to compute a series of laminar partially-premixed methane-air counterflow flames. Results are compared to detailed chemistry simulations. Both approaches reproduced the thermal flame structure but only the virtual chemistry captures the CO formation in all ranges of equivalence ratio from stoichiometry premixed flame to pure non-premixed flame. Finally, the two chemical models combined with the Thickened Flame model for LES are challenged on a piloted turbulent jet flame with inhomogeneous inlet, the Sydney inhomogeneous burner. Mean and RMS of temperature and CO mass fraction radial profiles are compared to available experimental data. Scatter data in mixture fraction space and Wasserstein metric of numerical and experimental data are also studied. The analyses confirm again that the virtual chemistry approach is able to account for the impact of multi-regime turbulent combustion on the CO formation.  相似文献   

19.
We review the state of the art in measurements and simulations of the behavior of premixed laminar and turbulent flames, subject to differential diffusion, stretch and curvature. The first part of the paper reviews the behavior of premixed laminar flames subject to flow stretch, and how it affects the accuracy of measurements of unstrained laminar flame speeds in stretched and spherically propagating flames. We then examine how flow field stretch and differential diffusion interact with flame propagation, promoting or suppressing the onset of thermodiffusive instabilities. Secondly, we survey the methodology for and results of measurements of turbulent flame speeds in the light of theory, and identify issues of consistency in the definition of mean flame speeds, and their corresponding mean areas. Data for methane at a single operating condition are compared for a range of turbulent conditions, showing that fundamental issues that have yet to be resolved for Bunsen and spherically propagating flames. Finally, we consider how the laminar flame scale response of flames to flow perturbations interacting with differential diffusion leads to very different outcomes to the overall sensitivity of the burning rate to turbulence, according to numerical simulations (DNS). The paper concludes with opportunities for future measurements and model development, including the perennial recommendation for robust archival databases of experimental and DNS results for future testing of models.  相似文献   

20.
While reasonably accurate in simulating gas phase combustion in biomass grate furnaces, CFD tools based on simple turbulence–chemistry interaction models and global reaction mechanisms have been shown to lack in reliability regarding the prediction of NOx formation. Coupling detailed NOx reaction kinetics with advanced turbulence–chemistry interaction models is a promising alternative, yet computationally inefficient for engineering purposes. In the present work, a model is proposed to overcome these difficulties. The model is based on the Realizable k–? model for turbulence, Eddy Dissipation Concept for turbulence–chemistry interaction and the HK97 reaction mechanism. The assessment of the sub-models in terms of accuracy and computational effort was carried out on three laboratory-scale turbulent jet flames in comparison with the experimental data. Without taking NOx formation into account, the accuracy of turbulence modelling and turbulence–chemistry interaction modelling was systematically examined on Sandia Flame D and Sandia CO/H2/N2 Flame B to support the choice of the associated models. As revealed by the Large Eddy Simulations of the former flame, the shortcomings of turbulence modelling by the Reynolds averaged Navier–Stokes (RANS) approach considerably influence the prediction of the mixing-dominated combustion process. This reduced the sensitivity of the RANS results to the variations of turbulence–chemistry interaction models and combustion kinetics. Issues related to the NOx formation with a focus on fuel bound nitrogen sources were investigated on a NH3-doped syngas flame. The experimentally observed trend in NOx yield from NH3 was correctly reproduced by HK97, whereas the replacement of its combustion subset by that of a detailed reaction scheme led to a more accurate agreement, but at increased computational costs. Moreover, based on results of simulations with HK97, the main features of the local course of the NOx formation processes were identified by a detailed analysis of the interactions between the nitrogen chemistry and the underlying flow field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号