首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Even though there is a pressing interest in clean energy sources, compression ignition (CI) engines, also called diesel engines, will remain of great importance for transportation sectors as well as for power generation in stationary applications in the foreseeable future. In order to promote applications dealing with complex diesel alternative fuels by facilitating their integration in numerical simulation, this paper targets three objectives. First, generate novel diesel fuel surrogates with more than one component. Here, five surrogates are generated using an advanced chemistry solver and are compared against three mechanisms from the literature. Second, validate the suggested reaction mechanisms (RMs) with experimental data. For this purpose, an engine configuration, which features a reacting spray flow evolving in a direct-injection (DI), single-cylinder, and four-stroke motor, is used. The RNG k-Epsilon coupled to power-law combustion models is applied to describe the complex in-cylinder turbulent reacting flow, while the hybrid Eulerian-Lagrangian Kelvin Helmholtz-Rayleigh Taylor (KH-RT) spray model is employed to capture the spray breakup. Third, highlight the impact of these surrogate fuels on the combustion properties along with the exergy of the engine. The results include distribution of temperature, pressure, heat release rate (HRR), vapor penetration length, and exergy efficiency. The effect of the surrogates on pollutant formation (NOX, CO, CO2) is also highlighted. The fifth surrogate showed 47% exergy efficiency. The fourth surrogate agreed well with the maximum experimental pressure, which equaled 85 Mpa. The first, second, and third surrogates registered 400, 316, and 276 g/kg fuel, respectively, of the total CO mass fraction at the outlet. These quantities were relatively higher compared to the fourth and fifth RMs.  相似文献   

2.
The crucial issue of quantum communication protocol is its security. In this paper, the security of the Quantum Authentication Scheme Based on Entanglement Swapping proposed by Penghao et al. (Int J Theor Phys., doi:10.1007/s10773-015-2662-7) is reanalyzed. It is shown that the original does not complete the task of quantum authentication and communication securely. Furthermore a simple improvement on the protocol is proposed.  相似文献   

3.
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.  相似文献   

4.
Bio-based alternative fuels have received increasing attention with growing concerns about depletion of fossil reserves and environmental deterioration. The development of new combustion concepts in internal combustion engines requires a better understanding of autoignition characteristics of the bio-based alternative fuels. This study investigates two cases of alternative fuels, namely, a kerosene-type fuel farnesane and an oxygenated fuel, TPGME, and compares those fuels with full-boiling range of fuels with similar cetane number. The homogeneous autoignition and spray ignition characteristics of the selected fuels are studied using a modified CFR octane rating engine and a cetane rating instrument, respectively. When comparing farnesane with a full-boiling range counterpart (HRJ8), their similar cetane ratings result in comparable combustion heat release, but the overall ignition reactivity of farnesane is stronger than HRJ8 during the pre-ignition process. Results from a constant volume spray combustion chamber indicate that the spray process of farnesane and HRJ8 strongly influences the overall ignition delay of each fuel. Despite the similar cetane ratings of TPGME and n-heptane, TPGME shows greater apparent low-temperature oxidation reactivity at low compression ratios in the range from CR 4.0-5.5 than n-heptane. A simplified model focused on the key reaction pathways of low-temperature oxidation of TPGME has been applied to account for the stronger low-temperature reactivity of TPGME, supported by density functional theory (DFT) calculations. Regardless of the similar cetane ratings of the fuels, n-heptane and JP-8/SPK lead to similar total ignition delay times, while TPGME shows the shortest overall ignition delay times in the constant volume combustion chamber.  相似文献   

5.
In the article by Hong‐Hua Fang et al. (doi: http://dx.doi.org/10.1002/lpor.201300222 ), published in Laser Photonics Rev. 8, 687–715 (2014), the names of two authors in references were wrongly spelt and citations in the text were missing. This erratum is published to correct this.  相似文献   

6.
A theoretical model of thermal radiation absorption in semi-transparent droplets at the surface and inside a fuel spray is presented. Asymmetry of droplet illumination is taken into account. Results of Mie calculations of thermal radiation absorption inside large spherical droplets illuminated from a hemisphere are presented. Simple approximations for the angular and radial dependencies of the absorbed radiation power are suggested. These approximations are generalisations of the approximations suggested earlier by the authors for the case of symmetric illumination of droplets. They predict the results close to those which follow from the Mie calculations. Results of approximate calculations for a typical diesel fuel droplet at the periphery of the spray are presented. As in the case of symmetrical droplet illumination, an increased absorption of thermal radiation in the central area of the droplet is predicted. Also, at the illuminated side of the droplet, the absorption of radiation in a thin layer near the surface of the droplet is predicted, as in the case of symmetrical droplet illumination. Absorption of radiation in the central area of the droplet is related to the contribution of radiation in the spectral ranges of semi-transparency. The maximum of radiation absorption near the droplet surface is linked to the contribution of radiation in the vicinity of the diesel fuel absorption peak .  相似文献   

7.
8.
本文介绍了在压燃式发动机上进行的预混合燃烧研究。在柴油机的进气道入口处安装了一个电控燃料喷射系统,喷入具有低十六烷值、低沸点的甲缩醛(DMM)燃料,在压缩冲程中形成均匀的混合气,并在上止点附近喷入少量柴油来点燃混合气。本文研究了预混合燃料比、发动机负荷、进气中CO2浓度和喷孔直径对发动机燃烧和排放的影响。试验结果表明,进气道喷射DMM的预混合燃烧能同时大幅降低NOx和碳烟排放,为降低柴油机有害排放提供了一种新途径。  相似文献   

9.
In this paper, we present an explicit formula that connects the Kontsevich-Witten tau-function and the Hodge tau-function by differential operators belonging to the \({\widehat{GL(\infty)}}\) group. Indeed, we show that the two tau-functions can be connected using Virasoro operators. This proves a conjecture posted by Alexandrov in (From Hurwitz numbers to Kontsevich-Witten tau-function: a connection by Virasoro operators, Letters in Mathematical physics, doi:10.1007/s11005-013-0655-0, 2014).  相似文献   

10.
The major bottleneck for popularization and utilization of the conventional mechanical valve pulse combustors is the self-priming mode of gas supply. An aerodynamic valve (as against mechanical valve) self-excited pulse combustor of the Helmholtz-type with continuous supply of gas and air was designed and a mathematical model was established in this paper. The theoretical model employed well-stirred reactor model and a single step Arrhenius chemistry, and took those factors which might affect the combustion stability into account. The factors include the variation of the mass rate of the reactants affected by the pressure in the combustion chamber, the convective and radiation heat loss in the combustion chamber, and the heat transfer and wall friction in the tailpipe. The effect of wall temperature of combustion chamber, wall heat transfer coefficient, tailpipe length and friction coefficient on combustionstability were analyzed. The range of combustion oscillations can be predicted. It is theoretically and experimentally shown that combustion oscillations can be produced with a continuous supply of fuel and air without mechanical valves. The experimental data show qualitative agreement with predictions from the theoretical model. The theoretical model could be a tool for designing and optimizing the self-excited pulse combustor.  相似文献   

11.
The current research is focused on the cooling of a hot moving steel plate by using air atomized spray cooling technique. A new type of coolant, Cu-Al LDH nanofluid, has been prepared and used for heat flux removal. Preparation method of nanofluid and its characteristics has been reported. The cooling effectiveness is reported in terms of cooling rate by varying the concentration of nanofluid in five levels. The results indicate that the cooling rate increases at very low concentration of LDH with respect to base fluid. However, beyond a certain concentration a decreasing trend of cooling rate has been observed.

Abbreviations: CHF: Critical heat flux; HTC: Heat transfer coefficients; LDH:Layered double hydroxide; TEM: Transmission electron microscopy.  相似文献   


12.
Relying on the quantum tunnelling concept and Maxwell–Boltzmann–Gibbs statistics, Gamow shows that the star-burning process happens at temperatures comparable to a critical value, called the Gamow temperature (T) and less than the prediction of the classical framework. In order to highlight the role of the equipartition theorem in the Gamow argument, a thermal length scale is defined, and then the effects of non-extensivity on the Gamow temperature have been investigated by focusing on the Tsallis and Kaniadakis statistics. The results attest that while the Gamow temperature decreases in the framework of Kaniadakis statistics, it can be bigger or smaller than T when Tsallis statistics are employed.  相似文献   

13.
We report on a novel method for two-dimensional electrical mapping of neuronal activity using a 1 mm2 array of 16384 sensor field-effect transistors fabricated by an extended CMOS (complementary metal oxide silicon) technology. The contact from neurons to chip is made by an insulating oxide on the chip surface that provides a purely capacitive drive of the sensor transistors. As a test system for multi-transistor-array (MTA) recording we use cultured neurons from the pond snail. We present electrical maps of an individual neuron and of a small neuronal network at a resolution of 7.8 m. MTA recording provides a tool for imaging the network dynamics of cultured nerve cells and brain slices for studies in neurobiology and biosensorics. Supplementary material to this paper is available in electronic form on Springers server at http://dx.doi.org/10.1007/s00339-004-2991-5PACS 87.17.Nn, 87.80.Xa, 73.40.Mr  相似文献   

14.
We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018.  https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018.  https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.  相似文献   

15.
Internal friction (or damping) is a measure of energy dissipation during mechanical vibration. The internal friction peak induced by grain boundary (GB) relaxation was discovered by Kê in polycrystals in 1947. The GB internal friction and related anelastic effects have been successfully interpreted by Zener's anelastic theory and viscous sliding model. Since then, the GB internal friction peak has been widely used to study the dynamic process of GBs, impurity segregation at GBs and relevant processes in materials science.

Previously, the GB internal friction was mostly studied with polycrystalline materials, in which mixed contributions of different types of GBs are involved. Since the microstructures and behaviors for different types of GBs are different, the detailed mechanism of the GB peak in polycryatals has not been clearly clarified.

From the beginning of the 21th century, the internal friction in bicrystals (each has a single boundary) with different misorientations and rotation axes has been systematically investigated. The results indicate that the internal friction can be used to distinguish the individual behavior of different types of GBs and applied to the practice of “GB engineering.”

Moreover, the coupling effect and compensation effect involved in GB relaxation has been recently observed and explained. The coupling effect means a correlated atomic motion occurred in GB relaxation. The compensation effect indicates that the apparent activation enthalpy is linearly related to the activation entropy in GB relaxation. These findings improve the understanding of the mechanism of GB internal friction.

This article attempts to give a comprehensive review to the investigations of GB internal friction in polycrystals, bamboo-crystals, and bicrystals. The microscopic mechanisms and the further applications of GB internal friction are discussed and prospected.  相似文献   


16.
The theoretical method described by Campos [D. Campos, A thermodynamic-like approach for the study of probabilistic systems, Physica A 390 (2011) 214. http://dx.doi.org/10.1016/j.physa.2010.09.023] is used for the study of quantum systems giving rise to a modified quantum statistical mechanics. The core of this approach includes a nonlinear relationship between Hartley information (pseudo-energy) and energy eigenvalues, and the use of thermodynamic-like functions parameterized by the continuous entropic parameter qq (q∈[0,∞)q[0,)).  相似文献   

17.
含甲缩醛柴油喷雾和燃烧排放特性的试验研究   总被引:3,自引:0,他引:3  
应用激光相位多普勒技术测量了含甲缩醛柴油喷雾的速度场和粒径场,在直喷式柴油机上研究了该含氧混合燃油的燃烧排放特性。结果表明,添加甲缩醛可改善柴油的雾化,增加喷雾轴线上的粒子速度,但减小喷雾锥角;同时以远大于其加入的比例降低柴油机排气烟度,但对氮氧化物的排放影响不大。柴油机采用甲缩醛作燃油添加剂时,需改造燃油系统。  相似文献   

18.
Probabilistic models with flexible tail behavior have important applications in engineering and earth science. We introduce a nonlinear normalizing transformation and its inverse based on the deformed lognormal and exponential functions proposed by Kaniadakis. The deformed exponential transform can be used to generate skewed data from normal variates. We apply this transform to a censored autoregressive model for the generation of precipitation time series. We also highlight the connection between the heavy-tailed κ-Weibull distribution and weakest-link scaling theory, which makes the κ-Weibull suitable for modeling the mechanical strength distribution of materials. Finally, we introduce the κ-lognormal probability distribution and calculate the generalized (power) mean of κ-lognormal variables. The κ-lognormal distribution is a suitable candidate for the permeability of random porous media. In summary, the κ-deformations allow for the modification of tails of classical distribution models (e.g., Weibull, lognormal), thus enabling new directions of research in the analysis of spatiotemporal data with skewed distributions.  相似文献   

19.
A multicomponent vaporization model is integrated with detailed fuel chemistry and soot models for simulating biodiesel–diesel spray combustion. Biodiesel, a fuel mixture comprised of fatty-acid methyl esters, is an attractive alternative to diesel fuel for use in compression-ignition engines. Accurately modelling of the spray, vaporization, and combustion of the fuel mixture is critical to predicting engine performance using biodiesel. In this study, a discrete-component vaporization model was developed to simulate the vaporization of biodiesel drops. The model can predict differences in the vaporization rates of different fuel components. The model was validated by use of experimental data of the measured biodiesel drop size history and spray penetration data obtained from a constant-volume chamber. Gas phase chemical reactions were simulated using a detailed reaction mechanism that also includes PAH reactions leading to the production of soot precursors. A phenomenological multi-step soot model was utilized to predict soot emissions from biodiesel–diesel combustion. The soot model considered various steps of soot formation and destruction, such as soot inception, surface growth, coagulation, and PAH condensation, as well as oxidation by oxygen and hydroxyl-containing molecules. The overall numerical model was validated with experimental data on flame structure and soot distributions obtained from a constant-volume chamber. The model was also applied to predict combustion, soot and NOx emissions from a diesel engine using different biodiesel–diesel blends. The engine simulation results were further analysed to determine the soot emissions characteristics by use of biodiesel–diesel fuels.  相似文献   

20.
Quite often one of the biggest problems in analytical methods, including spectrometry, resides in the pre-processing of the sample, which usually must be solved manually. To solve these problems, it can be very useful to request the help of the flow techniques, which will allow to automate the methods, decrease the time of the analysis, decrease the consumption of the samples and reagents, increase the reproducibility, the sample throughput and to work continuously for a long period of time.

Between the advantages of the low separation flow techniques are their very high versatility facing the application of various treatment techniques, such as photo-oxidation, pre-concentration, clean-up, derivatization, gas diffusion, etc. Since the entire process is carried out in a completely closed system, results are obtained in a faster and more reproducible way.

In this contribution, coupling different low-resolution separation flow techniques with several very selective spectrometric instruments, like ICP–AES, ICP–MS, AFS, etc. Hyphenation with different kind of chromatographic and the capillary electrophoretic techniques is also described.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号