首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Geochemical studies of carbon, nitrogen, delta13C, delta15N as well as Fe, Mn, Cd, Zn, Cr and Hg in suspended matter taken from the river Weisse Elster (central Germany) between 1997 and 2001 reveal significant changes to the composition of the organic sediment load, which correlate with the hydrological period and flow rate. Using C/N ratios and the isotope values of carbon and nitrogen as source indicators, it was found that the organic suspended matter fractions in hydrological winter periods comprise both resuspended mortal plankton material from the riverbed and terrigenous C3 plant material from the clastic input. During the 6 month summer periods, increased bioproductivity results in more dissolved carbon and mineral nitrogen compounds being taken up by the freshly formed aquatic organic substance (freshwater plankton). These compounds stem from bacterial breakdown processes affecting organic components of the river sediment and/or the peripheral soil zone. Increasing fractions of freshwater plankton during the summer period are accompanied by an increase in the nitrogen content and by isotope signatures shifting (delta13C to lower but delta15N to higher values) in the suspended matter. Seasonally opposite correlations between metal contents (e.g. Cd, Zn, Cr, Hg and Fe) and the carbon and nitrogen levels of suspended matter (significantly positive in winter and significantly negative in summer) show that in suspended matter these elements mostly bind to resuspended mortal (rather than the freshly formed living aquatic) organic substance. According to long-term measuring series, between 1993 and 2002 the levels of heavy metals (especially cadmium) in the suspended matter of the river Weisse Elster decreased. Similarly, between 1997 and 2001 the oxygen level in the river Weisse Elster improved. This caused the faster breakdown of organic substance on the riverbed, resulting in the increased uptake of 15N-rich nitrogen compounds into the fresh aquatic organic substance formed every year, and an increase in the conversion of dissolved manganese in the water into insoluble manganese compounds in the river sediment.  相似文献   

2.
A newly developed interface coupling a CHN combustion device (elemental analyser 'EA') to an isotope ratio mass spectrometer is described and evaluated. The purpose of the device is to extend the dynamic range of delta(13)C and delta(15)N analysis from less than 2 orders of magnitude to more than 3 orders of magnitude. Carbon isotope ratio measurements of atropine as a model compound have been performed analysing between 1 μg to 5 mg C with acceptable to excellent precision (0.6 to 0.06 per thousand, delta-notation). The correction due to the blank signal is critical for sample amounts smaller than 4 μg C. The maximum sample weight is determined by the combustion capacity of the EA. Larger sample amounts are measured using dilution of a small part of the EA effluent with helium. The dilution mechanism works virtually free of isotope fractionation. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the δ13C and δ15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The δ13C and δ15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 ‰ for δ13C and 2.1 ‰ for δ15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment.  相似文献   

4.
Dual stable isotope analysis in the regulated Colorado River through Grand Canyon National Park, USA, revealed a food web that varied spatially through this arid biome. Down-river enrichment of delta13C data was detected across three trophic levels resulting in shifted food webs. Humpack chub delta13C and delta15N values from muscle plugs and fin clips did not differ significantly. Humpback chub and rainbow trout trophic position is positively correlated with standard length indicating an increase in piscivory by larger fishes. Recovery of the aquatic community from impoundment by Glen Canyon Dam and collecting refinements for stable isotope analysis within large rivers are discussed.  相似文献   

5.
A simple, rapid and cost-effective laboratory method is described for labelling terrestrial slugs simultaneously with 13C and 15N. Slugs (Deroceras reticulatum) were provided with a mixture of [U-13C6]glucose, 15N-enriched lettuce powder, and wheat bran. Assimilation efficiencies for 13C (24.2%) and 15N (27.4%) were not affected by feeding regimes offering ad libitum or restricted access to unlabelled food during the labelling period. Body tissue was significantly more highly enriched in 13C but significantly less in 15N than cutaneous mucus after 15 days.  相似文献   

6.
Papyrus swamps usually form at the interface between river inlet and open lake. From one such wetland ecosystem (the Kibos system located in the Nyanza Gulf, Lake Victoria, Kenya), three sediment cores were recovered using piston corer in order to determine the fate of organic matter derived from papyrus and possible nutrient pathways in this system. The coring represented a transect from the river through the floating papyrus mat to the lake. Two short cores were retrieved from the lake and river. One long core (2 m) was recovered on a floating papyrus mat. The C:N ratio showed similar trends down core from the three locations. This may possibly be due to diagenic processes such as autolysis, dissolution and microbial mineralisation occurring in the sediments. Statistical analysis through one-way ANOVA revealed no significant differences in the C:N ratios between stations. Results of the stable carbon isotope ratios revealed that the delta(13)C of the river and lake samples were persistently more negative than -20 per thousand over the whole profile indicating possible contribution from terrestrial derived carbon. Regarding the floating mat core, the delta(13)C values ranged from -18.99 per thousand on the top of the floating mat but gradually increased to -16.82 per thousand towards the bottom of the core indicating possible contribution of carbon from Cyperus papyrus that has a delta(13)C value of -13.45+/-0.62 per thousand. Statistical analysis through one-way ANOVA revealed significant differences in the delta(13)C values between stations. The stable nitrogen isotope values were highly positive both in the river and in the lake station (delta(15)N > 10 per thousand), indicating possible contamination from sewage wastes. Values in the swamp were less positive suggesting first, the formation of ammonium depleted in (15)N from intense organic matter mineralisation, secondly indicating the delta(15)N signal of papyrus and, finally that nitrogen fixation processes were possibly occurring in the swamp. Statistical analysis through one-way ANOVA revealed significant differences in the delta(15)N values between stations. The stable isotope findings suggested that carbon derived from papyrus is retained in the swamp. Impoverished oxygen concentration in the swamp suggests high mineralisation of organic matter in the swamp indicating that the retained papyrus-derived carbon is largely respired. We conclude that further studies should be undertaken to determine the respiration rates in the wetland.  相似文献   

7.
In the present study, rates of litter decomposition and microbial biomass nitrogen were monitored over an 8-month period in a young broadleaf plantation (18 y) and in an old floodplain forest. Moreover, delta13C and delta15N temporal variations within soil profiles were evaluated at both sites. Rates of litter decomposition were higher in spring and autumn than in summer, in both forests. At the end of the observation period the percentage of original litter remaining was not statistically different between the young and the old forest and accounted for 60-70% of the original amount. Microbial biomass nitrogen in the remaining litter and the percentage of litter mass lost during decomposition were positively correlated. The difference in litter quality affected the decomposition rate and also the changes in carbon isotopic composition during the decomposition process. In contrast, 15N isotopic signatures showed a similar trend in the litter of the two forests irrespective of the litter quality. Although delta13Csoil and delta15Nsoil showed considerable temporal variation they increased with depth in the soils of both sites but their seasonal changes did not reflect those of the decomposing litter. Within the same soil horizon, both delta13C and delta15N showed similar seasonal trends in the soils of the two forests, suggesting the involvement of environmental factors acting at regional level, such as soil temperature and rainfall variations, in regulating seasonal delta13C and delta15N soil variations.  相似文献   

8.
Initial steps in the development of a suite of triple-resonance (1)H/(13)C/(15)N solid-state NMR experiments applicable to aligned samples of (13)C and (15)N labeled proteins are described. The experiments take advantage of the opportunities for (13)C detection without the need for homonuclear (13)C/(13)C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are approximately 20% randomly labeled with (13)C in all backbone and side chain carbon sites and approximately 100% uniformly (15)N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are (13)C labeled at only the alpha-carbon and (15)N labeled at the amide nitrogen of a few residues. The requirement for homonuclear (13)C/(13)C decoupling while detecting (13)C signals is avoided in the first case because of the low probability of any two (13)C nuclei being bonded to each other; in the second case, the labeled (13)C(alpha) sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the (13)C chemical shift and (1)H-(13)C and (15)N-(13)C heteronuclear dipolar coupling frequencies associated with the (13)C(alpha) and (13)C' backbone sites, which provide orientation constraints complementary to those derived from the (15)N labeled amide backbone sites. (13)C/(13)C spin-exchange experiments identify proximate carbon sites. The ability to measure (13)C-(15)N dipolar coupling frequencies and correlate (13)C and (15)N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the (13)C chemical shift and (1)H-(13)C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach.  相似文献   

9.
Sensitivity enhanced multiple-quantum 3D HCN-CCH-TOCSY and HCN-CCH-COSY experiments are presented for the ribose resonance assignment of (13)C/(15)N-labeled RNA sample. The experiments make use of the chemical shift dispersion of N1/N9 of pyrimidine/purine to distinguish the ribose spin systems. They provide a complementary approach for the assignment of ribose resonance to the currently used HCCH-COSY and HCCH-TOCSY type experiments in which either (13)C or (1)H is utilized to separate the different ribose spin systems. The pulse schemes have been demonstrated on a 23-mer (13)C/(15)N-labeled RNA aptamer complexed with neomycin and tested on a 32-mer RNA complexed with a 23-residue peptide.  相似文献   

10.
In the study of protein dynamics by (13)C or (15)N relaxation measurements different models from the Lipari-Szabo formalism are used in order to determine the motion parameters. The global rotational correlation time tau(R) of the molecule must be estimated prior to the analysis. In this Communication, the authors propose a new approach in determining an accurate value for tau(R) in order to realize the best fit of R(2) for the whole sequence of the protein, regardless of the different type of motions atoms may experience. The method first determines the highly structured regions of the sequence. For each corresponding site, the Lipari-Szabo parameters are calculated for R(1) and NOE, using an arbitrary value for tau(R). The chi(2) for R(2), summed over the selected sites, shows a clear minimum, as a function of tau(R). This minimum is used to better estimate a proper value for tau(R).  相似文献   

11.
The back-calculation of the diet is a common application of stable isotopes in animal ecology. The method is based on a predictable relation between the isotopic signature of the diet and the animal's tissues. Frequently, the assumption of a constant difference in isotopic signatures (trophic shift) is made. Carbon isotopic ratios of C(3) and C(4) plants differ by approximately 10 per thousand, making wheat (C(3)-plant) and corn (C(4)-plant) ideal materials for isotopic studies in nutritional ecology and especially for testing the back-calculation method. In this experiment, red flour beetles, Tribolium castaneum, were reared on wheat flour, corn flour and three different mixtures thereof, either in pure flour or with the addition of yeast inoculum or yeast grains. Development of T. castaneum on these experimental diets was monitored, and isotopic signatures of carbon and nitrogen in emerging adults were analysed. The values of trophic shift of C and N isotopes for wheat and corn flour were different, and the values for the mixtures did not correspond to those expected from a linear mixing model. The latter can be taken as an indication that the tiny larvae of T. castaneum may be capable of differentiating between particles of wheat and corn flour, making this animal model unsuitable for testing the back-calculation method.  相似文献   

12.
NMR relaxation-derived spectral densities provide information on molecular and internal motions occurring on the picosecond to nanosecond time scales. Using (13)C and (15)N NMR relaxation parameters [T(1), T(2), and NOE] acquired at four Larmor frequencies (for (13)C: 62.5, 125, 150, and 200 MHz), spectral densities J(0), J(omega(C)), J(omega(H)), J(omega(H) + omega(C)), J(omega(H) - omega(C)), J(omega(N)), J(omega(H) + omega(N)), and J(omega(H) - omega(N)) were derived as a function of frequency for (15)NH, (13)C(alpha)H, and (13)C(beta)H(3) groups of an alanine residue in an alpha-helix-forming peptide. This extensive relaxation data set has allowed derivation of highly defined (13)C and (15)N spectral density maps. Using Monte Carlo minimization, these maps were fit to a spectral density function of three Lorentzian terms having six motional parameters: tau(0), tau(1), tau(2), c(0), c(1), and c(2), where tau(0), tau(1) and tau(2) are correlation times for overall tumbling and for slower and faster internal motions, and c(0), c(1), and c(2) are their weighting coefficients. Analysis of the high-frequency portion of these maps was particularly informative, especially when deriving motional parameters of the side-chain methyl group for which the order parameter is very small and overall tumbling motions do not dominate the spectral density function. Overall correlation times, tau(0), are found to be in nanosecond range, consistent with values determined using the Lipari-Szabo model-free approach. Internal motional correlation times range from picoseconds for methyl group rotation to nanoseconds for backbone N-H, C(alpha)-H, and C(alpha)-C(beta) bond motions. General application of this approach will allow greater insight into the internal motions in peptides and proteins.  相似文献   

13.
Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The 13C and 15N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the 13C CP MAS chemical shifts the 7S alkaloids (δ C3 70–71 ppm) can be easily and conveniently distinguished from 7R (δC3 74.5–74.9 ppm), also 20R (δC20 41.3–41.7 ppm) from the 20S (δC20 36.3–38.3 ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger 15N MAS chemical shift of N4 (64.6 ppm) than the allo-type (3S, 20S) of isopteropodine (δN4 53.3 ppm). 15N MAS chemical shifts of N1–H in pentacyclic alkaloids are within 131.9–140.4 ppm.  相似文献   

14.
This work explores the utility of simple rotary resonance experiments for the determination of the magnitude and orientation of (13)C chemical shift tensors relative to one or more (13)C--(14)N internuclear axes from (13)C magic-angle-spinning NMR experiments. The experiment relies on simultaneous recoupling of the anisotropic (13)C chemical shift and (13)C--(14)N dipole--dipole coupling interactions using 2D rotary resonance NMR with RF irradiation on the (13)C spins only. The method is demonstrated by experiments and numerical simulations for the (13)C(alpha) spins in powder samples of L-alanine and glycine with (13)C in natural abundance. To investigate the potential of the experiment for determination of relative/absolute tensor orientations and backbone dihedral angles in peptides, the influence from long-range dipolar coupling to sequential (14)N spins in a peptide chain ((14)N(i)--(13)C(alpha)(i)--(14)N(i+1) and (14)N(i+1)--(13)C'(i)--(14)N(i) three-spin systems) as well as residual quadrupolar-dipolar coupling cross-terms is analyzed numerically.  相似文献   

15.
Partitioning of carbon recently assimilated by maize between shoots, roots, exudates, and CO2 from root respiration depending on three different levels of nutrient supply (full nutrient solution (NS), 10 times diluted NS, or deionised water) was estimated by 14C pulse labelling. A 13C fractionation in these compartments was investigated in relation to the nutrient supply. With decreasing nutrient supply, 14C allocation to the shoots and to the roots decreased from 76 % to 69 % and increased from 8 % to 13 % of 14C recovery, respectively. Average percentage of 14C in exudates and root-respired CO2 was 0.5 % and 16 % of 14C recovery, respectively. The concentration of the NS was not crucial for the amount of recently assimilated C recovered in exudates and CO2, but for the amounts in shoots and roots. For all three nutrient levels, roots were enriched in 13C when compared with shoots and 13C fractionation increased with decreasing nutrient supply up to 0.7 per thousand. Further 13C discrimination by exudation led to more 13C in exudates when compared with the roots of full nutrient supply and less 13C in exudates when compared with the roots grown in diluted NS and in deionised water. There were only small differences of<1.0 per thousand in delta13C values between roots and CO2 from root respiration. A 13C fractionation of recently assimilated C occurred between roots and exudates but was negligible for the CO2 respired by roots.  相似文献   

16.
Abstract

Measurements in protein turnover and in metabolism of amino acids and their degradation products by means of stable isotope labelled substrates have been increasingly applied in clinical research over the last years. In spite of numerous studies dealing with this topic, quite a few important insufficiently clarified methodical aspects remain. This refers, for instance, to the choice of suitable tracer substances, the difficulties in the determination of the excretion plateau and the validation of the oxidation rates as measured with individual-labelled amino acids with regard to the whole body protein synthesis. Such problems may become of decisive importance in special subjects, such as preterm infants and critically-ill patients.

Investigations into these issues conducted by our group have revealed that the protein turnover in the very small preterm infant is by no means as intensive as previously claimed. The utilisation of urea nitrogen for the whole body protein synthesis of the infant may assume substantial proportions under the conditions of marginal protein intake and of catchup-growth. Studies conducted by means of 15N-labelled bifidobacteria have pointed at the intensive substrate exchange existing between microflora and host.

Pediatric research has to be non-invasive. Consequently, methods based on arterio-venous differences in tracer concentrations and on muscle biopsies do not have very high priority in pediatric research. A search for references published in the last five years has shown, that 15N-glycine is still the most frequently used tracer substance. There is a tendency towards a further increase of cell culture experiments run with stable isotope labelled amino acids.

Clinical research groups increasingly turn their attention to stable isotopes and mass spectrometry. This impressively demonstrates the continuing importance of tracerkinetic methods in all branches of medicine.  相似文献   

17.
本文测定了12个甲醛缩氨基脲类化合物的~(15)N和~(13)C NMR谱,研究并对比了不同取代基对~(15)N和~(13)C化学位移的影响,结果表明:~(15)N化学位移对分子结构和取代基的电子效应更加敏感,变化范围更大.对N-苯甲醛缩氨基脲~(15)N化学位移与Hammatt取代常数σ的相关性进行了研究,并与苯胺的取代效应作了对比.  相似文献   

18.
It has long been evident that plant (15)N chiefly reflects the processes which fractionate (15)N/(14)N rather than the (15)N of plant N source(s). It has emerged recently that one of the most important fractionating processes contributing to the whole plant (15)N is the presence/absence, type or species of mycorrhiza, especially when interacting with nutrient deficiency. Ecto- and ericoid mycorrhizas are frequently associated with (15)N-depleted foliar (15)N, commonly as low as -12 per thousand. As shown by the present study, plants having no mycorrhiza, or those infected with various species of arbuscular mycorrhiza (AM)-forming fungi, interact with varying concentrations of soil nitrogen [N] and moisture to enrich plant (15)N by as much as 3.5 per thousand. Hence the lack of a mycorrhiza, or variation in the species of AM-forming fungal associations, can account for about 25% of the usually reported variations of foliar (15)N found in field situations and do so by (15)N enrichment rather than depletion. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

19.
The NMR spin-lattice relaxation rate (R1) and the rotating-frame spin-lattice relaxation rate (R1rho) of amide 15N and carbonyl 13C (13C') of the uniformly 13C- and 15N-labeled ubiquitin were measured at different temperatures and field strengths to investigate the temperature dependence of overall rotational diffusion and local backbone motion. Correlation between the order parameter of the N-H vector, SNH2, and that of the carbonyl carbon, S2C', was investigated. The effective S2C' was estimated from the direct fit of the experimental relaxation rates and from the slope of 2R2-R1 vs. B2 using Lipari-Szabo formalism. The average SNH2 decreased by 5.9%, while the average S2C' decreased by 4.6% from 15 to 47 degrees C. At the extreme low and high temperatures the difference in the temperature dependence of the order parameters vanishes. At the intermediate temperatures they do not change by the same amount but they follow the same trend. On the same peptide plane along the protein sequence, S2C' and SNH2 are highly correlated. The results suggest that fast local motion experienced at the site of the N-H vector and carbonyl nucleus is more complicated than previously thought and it cannot be easily described by one single type of motion in a broad range of temperature.  相似文献   

20.
Abstract

Carbon and nitrogen stable isotope compositions of organic matter, TOC/TN ratio, and manganese concentration in a sediment core that was collected in northern part of Lake Baikal (VER92ST10-GC2, water depth at 922 m, about 3 m long) were investigated to elucidate the origin of the sedimentary organic matter and its associated environmental factors.

The sediment core was composed of mainly two parts: turbidite sections and other sections. Constant δ13C and δ15N values of the turbidite sections were observed (- 26.8 ±0.2 ‰ for δ13C and 3.2 ± 0.1 ‰ for δ15N) throughout the core. The higher δ13C in turbidite sections (about - 27 ‰) than that of the other sections (- 31 to - 29 ‰) was clearly observed, and δ15N was different between turbidite sections (about 3‰) and other sections (3 to 5 ‰). δ13C of other sections was close to that of pelagic phytoplankton, indicating that sediment other than turbidite sections is composed of autochthonous components. The variation of stable isotopes in other sections may be possibly caused by the changes in either phytoplankton growth rate or contribution ratios of terrestrial to aquatic plants for δ13C. Either denitrification or fluctuation of δ15N in pelagic phytoplankton can be the cause of variable δ15N in other sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号