首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, we introduce the maximum edge biclique problem in bipartite graphs and the edge/node weighted multipartite clique problem in multipartite graphs. Our motivation for studying these problems came from abstractions of real manufacturing problems in the computer industry and from formal concept analysis. We show that the weighted version and four variants of the unweighted version of the biclique problem are NP-complete. For random bipartite graphs, we show that the size of the maximum balanced biclique is considerably smaller than the size of the maximum edge cardinality biclique, thus highlighting the difference between the two problems. For multipartite graphs, we consider three versions each for the edge and node weighted problems which differ in the structure of the multipartite clique (MPC) required. We show that all the edge weighted versions are NP-complete in general. We also provide a special case in which edge weighted versions are polynomially solvable.  相似文献   

2.
We improve the well-known result presented in Bertsimas and Sim (Math Program B98:49–71, 2003) regarding the computation of optimal solutions of Robust Combinatorial Optimization problems with interval uncertainty in the objective function coefficients. We also extend this improvement to a more general class of Combinatorial Optimization problems with interval uncertainty.  相似文献   

3.
This paper is devoted to some selected topics relating Combinatorial Optimization and Hierarchical Classification. It is oriented toward extensions of the standard classification schemes (the hierarchies): pyramids, quasi-hierarchies, circular clustering, rigid clustering and others. Bijection theorems between these models and dissimilarity models allow to state some clustering problems as optimization problems. Within the galaxy of optimization we have especially discussed the following: NP-completeness results and search for polynomial instances; problems solved in a polynomial time (e.g. subdominant theory); design, analysis and applications of algorithms. In contrast with the orientation to “new” clustering problems, the last part discusses some standard algorithmic approaches. This article appeared in 4OR 2, 179–219, 2004.  相似文献   

4.
Lower Bounds for Fixed Spectrum Frequency Assignment   总被引:1,自引:0,他引:1  
Determining lower bounds for the sum of weighted constraint violations in fixed spectrum frequency assignment problems is important in order to evaluate the performance of heuristic algorithms. It is well known that, when adopting a binary constraints model, clique and near-clique subproblems have a dominant role in the theory of lower bounds for minimum span problems. In this paper we highlight their importance for fixed spectrum problems. We present a method based on the linear relaxation of an integer programming formulation of the problem, reinforced with constraints derived from clique-like subproblems. The results obtained are encouraging both in terms of quality and in terms of computation time.  相似文献   

5.
The quadratic assignment problem (QAP), one of the most difficult problems in the NP-hard class, models many real-life problems in several areas such as facilities location, parallel and distributed computing, and combinatorial data analysis. Combinatorial optimization problems, such as the traveling salesman problem, maximal clique and graph partitioning can be formulated as a QAP. In this paper, we present some of the most important QAP formulations and classify them according to their mathematical sources. We also present a discussion on the theoretical resources used to define lower bounds for exact and heuristic algorithms. We then give a detailed discussion of the progress made in both exact and heuristic solution methods, including those formulated according to metaheuristic strategies. Finally, we analyze the contributions brought about by the study of different approaches.  相似文献   

6.
Approximating the maximum vertex/edge weighted clique using local search   总被引:1,自引:0,他引:1  
This paper extends the recently introduced Phased Local Search (PLS) algorithm to more difficult maximum clique problems and also adapts the algorithm to handle maximum vertex/edge weighted clique instances. PLS is a stochastic reactive dynamic local search algorithm that interleaves sub-algorithms which alternate between sequences of iterative improvement, during which suitable vertices are added to the current sub-graph, and plateau search, where vertices of the current sub-graph are swapped with vertices not contained in the current sub-graph. These sub-algorithms differ in firstly their vertex selection techniques in that selection can be solely based on randomly selecting a vertex, randomly selecting within highest vertex degree, or random selecting within vertex penalties that are dynamically adjusted during the search. Secondly, the perturbation mechanism used to overcome search stagnation differs between the sub-algorithms. PLS has no problem instance dependent parameters and achieves state-of-the-art performance for maximum clique and maximum vertex/edge weighted clique problems over a large range of the commonly used DIMACS benchmark instances.  相似文献   

7.
A strong clique in a graph is a clique intersecting every maximal independent set. We study the computational complexity of six algorithmic decision problems related to strong cliques in graphs and almost completely determine their complexity in the classes of chordal graphs, weakly chordal graphs, line graphs and their complements, and graphs of maximum degree at most three. Our results rely on connections with matchings and relate to several graph properties studied in the literature, including well-covered graphs, localizable graphs, and general partition graphs.  相似文献   

8.
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel et al. in Combinatorica 1(2):169–197, 1981). Perfect graphs have the key property that clique and chromatic number coincide for all induced subgraphs; we address the question whether the algorithmic results for perfect graphs can be extended to graph classes where the chromatic number of all members is bounded by the clique number plus one. We consider a well-studied superclass of perfect graphs satisfying this property, the circular-perfect graphs, and show that for such graphs both clique and chromatic number are computable in polynomial time as well. In addition, we discuss the polynomial time computability of further graph parameters for certain subclasses of circular-perfect graphs. All the results strongly rely upon Lovász’s Theta function.  相似文献   

9.
Berge defined a hypergraph to be balanced if its incidence matrix is balanced. We consider this concept applied to graphs, and call a graph to be balanced when its clique matrix is balanced. Characterizations of balanced graphs by forbidden subgraphs and by clique subgraphs are proved in this work. Using properties of domination we define four subclasses of balanced graphs. Two of them are characterized by 0–1 matrices and can be recognized in polynomial time. Furthermore, we propose polynomial time combinatorial algorithms for the problems of stable set, clique-independent set and clique-transversal for one of these subclasses of balanced graphs. Finally, we analyse the behavior of balanced graphs and these four subclasses under the clique graph operator. Received: April, 2004  相似文献   

10.
Consider the problem of maximizing a quadratic formover the standard simplex.Problems of this type occur, e.g., in the search for the maximum (weighted)clique in an undirected graph.In this paper, copositivity-based escape proceduresfrom inefficient local solutions are rephrased into lower-dimensionalsubproblems which are again of the same type. As a result, analgorithm is obtained which tries to exploit favourable data constellationsin a systematic way, and to avoid the worst-case behaviourof such NP-hard problems whenever possible. First results onfinding large cliques in DIMACS benchmark graphs are encouraging.  相似文献   

11.
Journal of Optimization Theory and Applications - This paper explores a new approach to reduce the maximum clique problem associated with permutation Hamming graphs to smaller clique problems. The...  相似文献   

12.
We consider the problem of partitioning a graph into cliques of bounded cardinality. The goal is to find a partition that minimizes the sum of clique costs where the cost of a clique is given by a set function on the nodes. We present a general algorithmic solution based on solving the problem variant without the cardinality constraint. We obtain constant factor approximations depending on the solvability of this relaxation for a large class of submodular cost functions which we call value-monotone submodular functions. For special graph classes we give optimal algorithms.  相似文献   

13.
Surrogate constraint methods have been embedded in a variety of mathematical programming applications over the past thirty years, yet their potential uses and underlying principles remain incompletely understood by a large segment of the optimization community. In a number of significant domains of combinatorial optimization, researchers have produced solution strategies without recognizing that they can be derived as special instances of surrogate constraint methods. Once the connection to surrogate constraint ideas is exposed, additional ways to exploit this framework become visible, frequently offering opportunities for improvement.We provide a tutorial on surrogate constraint approaches for optimization in graphs, illustrating the key ideas by reference to independent set and graph coloring problems, including constructions for weighted independent sets which have applications to associated covering and weighted maximum clique problems. In these settings, the surrogate constraints can be generated relative to well-known packing and covering formulations that are convenient for exposing key notions. The surrogate constraint approaches yield widely used heuristics for identifying independent sets as simple special cases, and also afford previously unidentified heuristics that have greater power in these settings. Our tutorial also shows how the use of surrogate constraints can be placed within the context of vocabulary building strategies for independent set and coloring problems, providing a framework for applying surrogate constraints that can be used in other applications.At a higher level, we show how to make use of surrogate constraint information, together with specialized algorithms for solving associated sub-problems, to obtain stronger objective function bounds and improved choice rules for heuristic or exact methods. The theorems that support these developments yield further strategies for exploiting surrogate constraint relaxations, both in graph optimization and integer programming generally.  相似文献   

14.
Many financial optimization problems involve future values of security prices, interest rates and exchange rates which are not known in advance, but can only be forecast or estimated. Several methodologies have therefore been proposed to handle the uncertainty in financial optimization problems. One such methodology is Robust Statistics, which addresses the problem of making estimates of the uncertain parameters that are insensitive to small variations. A different way to achieve robustness is provided by Robust Optimization, which looks for solutions that will achieve good objective function values for the realization of the uncertain parameters in given uncertainty sets. Robust Optimization thus offers a vehicle to incorporate an estimation of uncertain parameters into the decision making process. This is true, for example, in portfolio asset allocation. Starting with the robust counterparts of the classical mean-variance and minimum-variance portfolio optimization problems, in this paper we review several mathematical models, and related algorithmic approaches, that have recently been proposed to address uncertainty in portfolio asset allocation, focusing on Robust Optimization methodology. We also give an overview of some of the computational results that have been obtained with the described approaches. In addition we analyze the relationship between the concepts of robustness and convex risk measures.  相似文献   

15.
Many financial optimization problems involve future values of security prices, interest rates and exchange rates which are not known in advance, but can only be forecast or estimated. Several methodologies have therefore, been proposed to handle the uncertainty in financial optimization problems. One such methodology is Robust Statistics, which addresses the problem of making estimates of the uncertain parameters that are insensitive to small variations. A different way to achieve robustness is provided by Robust Optimization which, given optimization problems with uncertain parameters, looks for solutions that will achieve good objective function values for the realization of these parameters in given uncertainty sets. Robust Optimization thus offers a vehicle to incorporate an estimation of uncertain parameters into the decision making process. This is true, for example, in portfolio asset allocation. Starting with the robust counterparts of the classical mean-variance and minimum-variance portfolio optimization problems, in this paper we review several mathematical models, and related algorithmic approaches, that have recently been proposed to address uncertainty in portfolio asset allocation, focusing on Robust Optimization methodology. We also give an overview of some of the computational results that have been obtained with the described approaches. In addition we analyse the relationship between the concepts of robustness and convex risk measures.  相似文献   

16.
17.
This paper is devoted to some selected topics relating Combinatorial Optimization and Hierarchical Classification. It is oriented toward extensions of the standard classification schemes (the hierarchies): pyramids, quasi-hierarchies, circular clustering, rigid clustering and others. Bijection theorems between these models and dissimilarity models allow to state some clustering problems as optimization problems. Within the galaxy of optimization we have especially discussed the following: NP-completeness results and search for polynomial instances; problems solved in a polynomial time (e.g. subdominant theory); design, analysis and applications of algorithms. In contrast with the orientation to new clustering problems, the last part discusses some standard algorithmic approaches.Received: July 2004, Revised: September 2004, MSC classification: 62H30, 91C20, 05C65, 90C27, 68R01  相似文献   

18.
A definition of fuzzy clique in social networks is suggested which overcomes five limitations of current definitions. This definition is based on the networks in which the 0–1 strengths, the weighted strengths, and fuzzy strengths are all allowed. The fuzzy distance in such a network is defined. The node‐clique and clique‐clique coefficients are suggested. The core and the periphery of fuzzy cliques are discussed formally. A “cone like” property of the cores is discovered. The network structures are discussed using the new definition. A “no circle” property of networks is found. Basic fuzzy tools and the related algorithms are also discussed. Some examples are analyzed to demonstrate the theory.  相似文献   

19.
Several key results for set packing problems do not seem to be easily or even possibly transferable to set covering problems, although the symmetry between them. The goal of this paper is to introduce a nonidealness index by transferring the ideas used for the imperfection index defined by Gerke and McDiarmid [Graph imperfection, J. Combin. Theory Ser. B 83 (2001) 58-78]. We found a relationship between the two indices and the strength of facets defined in [M. Goemans, Worst-case comparison of valid inequalities for the TSP, mathematical programming, in: Fifth Integer Programming and Combinatorial Optimization Conference, Lecture Notes in Computer Science, vol. 1084, Vancouver, Canada, 1996, pp. 415-429; M. Goemans, L.A. Hall, The strongest facets of the acyclic subgraph polytope are unknown, in: Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 1084, Springer, Berlin, 1996, pp. 415-429]. We prove that a clutter is as nonideal as its blocker and find some other properties that could be transferred from the imperfection index to the nonidealness index. Finally, we analyze the behavior of the nonidealness index under some clutter operations.  相似文献   

20.
Linear mixed 0–1 integer programming problems may be reformulated as equivalent continuous bilevel linear programming (BLP) problems. We exploit these equivalences to transpose the concept of mixed 0–1 Gomory cuts to BLP. The first phase of our new algorithm generates Gomory-like cuts. The second phase consists of a branch-and-bound procedure to ensure finite termination with a global optimal solution. Different features of the algorithm, in particular, the cut selection and branching criteria are studied in details. We propose also a set of algorithmic tests and procedures to improve the method. Finally, we illustrate the performance through numerical experiments. Our algorithm outperforms pure branch-and-bound when tested on a series of randomly generated problems. Work of the authors was partially supported by FCAR, MITACS and NSERC grants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号