首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study was to evaluate the ability of folic acid-functionalized diblock copolymer micelles to improve the delivery and uptake of two poorly water-soluble anti-tumor drugs, tamoxifen and paclitaxel, to cancer cells through folate receptor targeting. The diblock copolymer used in this study comprised a hydrophilic poly[2-(methacryloyloxy)ethyl phosphorylcholine] (MPC) block, carrying at the chain end the folate targeting moiety, and a pH-sensitive hydrophobic poly[2-(diisopropylamino)ethyl methacrylate] (DPA) block (FA-MPC-DPA). The drug-loading capacities of tamoxifen- and paclitaxel-loaded micelles were determined by high performance liquid chromatography and the micelle dimensions were determined by dynamic light scattering and transmission electron microscopy. Cell viability studies were carried out on human chronic myelogenous leukaemia (K-562) and colon carcinoma cell lines (Caco-2) in order to demonstrate that drug-loaded FA-MPC-DPA micelles exhibited higher cytotoxicities toward cancer cells than unfunctionalized MPC-DPA micelles. Uptake studies confirmed that folate-conjugated micelles led to increased drug uptake within cancer cells, demonstrating the expected selectivity toward these tumor cells.  相似文献   

2.
The adsorption of a zwitterionic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-block-poly(methacrylic acid) (PDEA59-PMAA50), at the silica/aqueous solution interface has been characterised as a function of pH. In acidic solution, this copolymer forms core-shell micelles with the neutral PMAA chains being located in the hydrophobic cores and the protonated PDEA chains forming the cationic micelle coronas. In alkaline solution, the copolymer forms the analogous inverted micelles with anionic PMAA coronas and hydrophobic PDEA cores. The morphology of the adsorbed layer was observed in situ using soft-contact atomic force microscopy (AFM): this technique suggests the formation of a thin adsorbed layer at pH 4 due to the adsorption of individual copolymer chains (unimers) rather than micelle aggregates. This is supported by the remarkably low dissipation values and the relatively low degrees of hydration for the adsorbed layers, as estimated using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D) and optical reflectometry (OR). In alkaline solution, analysis of the adsorption data suggests a conformation for the adsorbed copolymers where one block projects normal to the solid/liquid interface; this layer consists of a hydrophobic PDEA anchor block adsorbed on the silica surface and an anionic PMAA buoy block extending into the solution phase. Tapping mode AFM studies were also carried out on the silica surfaces after removal from the copolymer solutions and subsequent drying. Interestingly, in these cases micelle-like surface aggregates were observed from both acidic and alkaline solutions. The lateral dimension of the aggregates seen is consistent with the corresponding hydrodynamic diameter of the copolymer micelles in bulk solution. The combination of the in situ and ex situ AFM data provides evidence that, for this copolymer, micelle aggregates are only seen in the ex situ dry state as a result of the substrate withdrawal and drying process. It remains unclear whether these aggregates are caused by micelle deposition at the surface during the substrate withdrawal from the solution or as a result of unimer rearrangements at the drying front as the liquid recedes from the surface.  相似文献   

3.
We have characterized three diblock copolymers bearing zwitterionic phosphorylcholine and weak tertiary amine groups, namely, poly[((2-(methacryloyloxy)ethyl)phosphorylcholine)30- block-(2-(dimethylamino)ethyl methacrylate)60] (denoted as MPC30-DMA60, Mn=18,000), poly[((2-(methacryloyloxy)ethyl)phosphorylcholine)30- block-(2-(diethylamino)ethyl methacrylate)60) (denoted as MPC30-DEA60, Mn=20,000), and poly[((2-(methacryloyloxy)ethyl)phosphorylcholine)30- block-(2-(diisopropylamino)ethyl methacrylate)60) (denoted as MPC30-DPA60, Mn=21,000), by studying their surface tension and solution aggregation through a combined approach of surface tension measurement, dynamic light scattering, and small-angle neutron scattering. Our results show that larger tertiary amine substituents lead to an increasing tendency to form micellar aggregates, which is consistent with the increasing copolymer hydrophobicity. Thus, MPC30-DMA60 did not aggregate under the experimental conditions studied. The free chains exist in the form of thin cylinders, whose length decreases with copolymer concentration and solution temperature but increases with solution pH. The diameters of the MPC30-DMA60 cylinders remained almost constant at around 30 A under all the conditions studied. At the lower copolymer concentration of 0.5 wt %, the cylindrical lengths correspond to the persistence length of the copolymer backbone and are close to its full length, indicating a rather high rigidity. Further data analysis showed that, at the two higher concentrations of 2 and 4 wt %, the phosphorylcholine and amine blocks associate, inducing bending of the copolymer backbone. One backbone kink was required to satisfy all the constraints, including the dry volume of the copolymer. MPC30-DEA60 showed a similar trend of pH- and concentration-dependent conformational responses for the free copolymer, but in addition micellar aggregation occurred at pH 9. In contrast, MPC30-DPA60 exhibited significantly reduced solubility associated with strong aggregation, which is consistent with it being the most hydrophobic copolymer in the series.  相似文献   

4.
Novel biomimetic gelators with star diblock copolymer architectures have been synthesized by atom-transfer radical polymerization (ATRP). Two types of trifunctional ATRP initiator were used to polymerize 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] at 20 degrees C, followed by sequential monomer addition of various tertiary amine methacrylates or mixtures thereof. Poor living character was achieved using an amide-based trifunctional initiator, but the analogous triester initiator gave reasonably well-defined thermo-responsive and pH-responsive star diblock copolymers. The most effective thermo-responsive gelators were obtained by the statistical terpolymerization of 2-(dimethylamino)ethyl methacrylate [DMA], 2-(diethylamino)ethyl methacrylate [DEA], and a monomethoxy-capped poly(propylene oxide) methacrylate [PPOMA], whereas pH-responsive gelators were prepared using 2-(diisopropylamino)ethyl methacrylate [DPA] as the second monomer. Star diblock copolymer gelators that were both thermo-responsive and pH-responsive were obtained by the statistical copolymerization of DMA with DPA. Copolymer compositions were assessed by 1H NMR spectroscopy, and the molecular weight distributions of the three-arm star MPC homopolymer precursors were assessed by aqueous gel permeation chromatography. Static light scattering was used to obtain weight-average molecular weights of selected star diblock copolymers and rheological measurements and variable-temperature 1H NMR were used to probe the onset of gelation.  相似文献   

5.
Cationic surfactants N,N,N-trimethyl-10-(4-nitrophenoxy)decylammonium bromide (N10TAB) and N,N,N',N'-tetramethyl-N,N'-bis[10-(4-nitrophenoxy)decyl]-1,6-hexanediammonium dibromide (N10-6-10N), bearing aromatic nitrophenoxy groups in the ends of their hydrophobic chains, have been synthesized, and their self-assembling properties in aqueous solutions have been studied by conductivity, isothermal titration microcalorimetry, 1H NMR spectroscopy, and dynamic light scattering. Below the critical micelle concentration, N10-6-10N can form premicelles with 2 or 3 surfactant molecules. Beyond the critical micelle concentration, the two surfactants have strong self-aggregation ability and can form micelles of rather small size and with small aggregation numbers N, which are 30 +/- 3 for N10TAB and 20 +/- 2 for N10-6-10N, respectively. Also, the variations in 1H NMR signals at different surfactant concentrations provide the information on the environmental change of the surfactants upon their micellization progress. The most prominent phenomenon is the shielding effect of the aromatic groups over the protons in the aliphatic chains, implying that the nitrophenoxy groups partially insert into the micelles and face the several middle methylenes of the hydrophobic side chains.  相似文献   

6.
Sodium dodecyl sulfate (SDS)-poly(propylene oxide) methacrylate (PPOMA) (of molecular weight M(w) = 434 g x mol(-1)) mixtures have been studied using conductimetry, static light scattering, fluorescence spectroscopy, and 1H NMR. It has been shown that SDS and PPOMA form mixed micelles, and SDS and PPOMA aggregation numbers, N(ag SDS) and N(ag PPOMA), have been determined. Total aggregation numbers of the micelles (N(ag SDS) + N(ag PPOMA)) and those of SDS decrease upon increasing the weight ratio R = PPOMA/SDS. Localization of PPOMA inside the mixed micelles is considered (i) using 1H NMR to localize the methacrylate function at the hydrophobic core-water interface and (ii) by studying the SDS-PPO micellar system (whose M(w) = 400 g x mol(-1)). Both methods have indicated that the PPO chain of the macromonomer is localized at the SDS micelle surface. Models based on the theorical prediction of the critical micellar concentration of mixed micelles and structural model of swollen micelles are used to confirm the particular structure proposed for the SDS-PPOMA system, i.e., the micelle hydrophobic core is primarily composed of the C12 chains of the sodium dodecyl sulfate, the hydrophobic core-water interface is made up of the SDS polar heads as well as methacrylate functions of the PPOMA, the PPO chains of the macromonomer are adsorbed preferentially on the surface, i.e., on the polar heads of the SDS.  相似文献   

7.
Well-defined amphiphilic cubic silsesquioxane-poly(ethylene oxide) (CSSQ-PEO) was prepared from octakis (dimethylsiloxy)octasilsesquioxane (Q8M8(H)) and allyl-PEO through a hydrosilylation reaction. The structure of CSSQ-PEO was characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). The amphiphilic properties and aggregation process of CSSQ-PEO in aqueous solution were investigated by fluorescence, dynamic and static light scattering (DLS and SLS), and transmission electron microscopy (TEM). The critical aggregation concentration (CAC) determined by fluorescence measurements was found to be 0.28 mg/mL. Combinations of DLS, SLS, and TEM studies showed the existence of core-corona micelle with hydrophobic CSSQ as the core and hydrophilic PEO as the corona in aqueous solution. The observation of two size distribution peaks from DLS measurements revealed the coexistence of small amounts of unassociated unimolecular micelles (approximately 10% of the scattered intensity) together with micellar aggregates when the CSSQ-PEO concentration was < or = 2 mg/mL. The hydrodynamic radii (R(h)) of unassociated unimolecular micelle and micellar aggregates were found to be 26 and 79 nm, respectively. A large R(g)/R(h) ratio (1.46) and the extremely small value of average chain density (4 x 10(-4) g/cm3) indicate the small hydrophobic CSSQ core was surrounded by the extended PEO coronae. The aggregation number (N(agg)) of CSSQ-PEO in aqueous solution was found to be 38 +/- 2 from SLS and 31-40 from TEM, respectively. The long PEO segments act as a spacer between the spherical aggregates, which facilitate the formation of a network-like structure at high concentration.  相似文献   

8.
The unusual aggregation behavior of poly(N-isopropylacrylamide)-based amphiphilic block copolymers was investigated by a combination of dynamic and static laser light scattering, AFM, and 1H NMR. The results revealed that PS-b-PNIPAM always forms large micelle aggregates in the transition process from an organic solvent to water due to the cononsolvency effect of PNIPAM. The cononsolvency effect of PNIPAM can be avoided to obtain classical micelles with PS29-b-PNIPAM27 in acetone-water at low temperatures (below 20 degrees C).  相似文献   

9.
Generation 3.5 poly(amido amine) dendron (G3.5) with 16 n‐butyl terminal groups containing an acrylamide monomer (AaUG3.5) was prepared by condensation between an amino focal group in G3.5 and 11‐acrylamidoundecanoic acid. AaUG3.5 was polymerized using poly(2‐methacryloyloxyethyl phosphorylcholine) (pMPC)‐based macro‐chain transfer agent via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to obtain amphiphilic diblock copolymers with different compositions. The diblock copolymers (PmDn) were composed of a hydrophilic pMPC block and hydrophobic pendant dendron‐bearing block, where P and D represent pMPC and pAaUG3.5, respectively, and m and n represent the degree of polymerization for each block, respectively. P296D1 and P98D3 formed vesicles and large compound micelles and vesicles, respectively, which was confirmed by light scattering measurements and transmission electron microscopic (TEM) observations. The large compound micelles formed from P98D3 could not incorporate hydrophilic guest polymer molecules, because the aggregates did not have a hydrophilic hollow core. In contrast, the vesicles formed from P269D1 could incorporate hydrophilic guest polymer molecules into the hollow core. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4923–4931  相似文献   

10.
A random copolymer [p(MMA/DMAB)] composed of methyl methacrylate (MMA) and 2,2‐dimethoxy‐1,2‐di(4‐methacryloyloxy)phenylethane‐1‐one (DMAB), which can simultaneously act as a photoradical initiator and crosslinkable monomer, was prepared by free radical random copolymerization. A hydrophobic film on quartz glass was prepared using p(MMA/DMAB) by a spin‐coating technique. Hydrophilic methacrylic acid (MA) and 2‐methacryloyloxyethyl phosphorylcholine (MPC) were graft‐copolymerized from the hydrophobic p(MMA/DMAB) film in water by photo‐cleavage of the DMAB unit. The graft copolymer of MA and MPC was characterized by infrared and X‐ray photoelectron spectroscopies and contact angle measurements. To confirm that MPC can be grafted onto the surface of the film selectively at only UV‐irradiated sites, photoinduced graft copolymerization of MPC using a photomask was performed to prepare a pMPC patterned p(MMA/DMAB) film. The film was stained using a rhodamine 6G dye that can absorb specifically to pMPC to confirm the pMPC pattern. The p(MMA/DMAB) film can be applied to various fields including photolithography and biomedical applications, because the film surface properties can be controlled using various vinyl monomers selectively on UV‐irradiated sites. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2822–2829  相似文献   

11.
To obtain controllable and biocompatible drug carriers, a series of amphiphilic biodegradable multiblock polyurethanes end‐capped by phosphorylcholine were designed and synthesized using L ‐lysine ethyl ester diisocyanate (LDI), poly(lactic acid)‐poly(ethylene glycol)‐poly(lactic acid) (PLA‐PEG‐PLA), 1,4‐butanediol (BDO), and 4‐hydroxy butyl phosphorylcholine (BPC) was used as end‐capper to improve their biocompatibility and provide them with tailored micellization characteristics. The resulting polyurethanes were fully characterized with proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatograph (GPC), and differential scanning calorimetry (DSC). More importantly, these phosphorylcholine‐capped polyurethanes can self assemble into micelles that are smaller than 100 nm in diameter. Their particle sizes, size distributions, and zeta potentials can also be tailored by varying the phosphorylcholine content. The incorporation of phosphorylcholine into these polyurethanes has significantly affected their degree of microphase separation, bulk and micelle degradation rates. This work provides a new and facile approach to prepare amphiphilic block copolymer micelles with controllable performances, which could be useful for drug delivery and bioimaging applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Block copolymer micelles find application in many fields as nanocarriers, especially in drug delivery. We report herein that specific interactions between hydrophobic guest molecules and core-forming segments can significantly improve the loading capacity of polymeric micelles. High loading capacities (>100% weight/weight of polymer (w/wp)) were systematically observed for the encapsulation of probes containing weak carboxylic acid groups by micellar nanoparticles having poly[2-(dialkylamino)ethyl methacrylate] cores (i.e., particles whose cargo space exhibits antagonist weak base functions), as demonstrated by the incorporation of indomethacin (IND), ibuprofen (IBPF), and trans-3,5-bis(trifluoromethyl)cinnamic acid (F-CIN) into either poly(ethylene oxide)-b-poly[2-(diisopropylamino)ethyl methacrylate] (PEO-b-PDPA) or poly(glycerol monomethacrylate)-b-PDPA (PG2MA-b-PDPA) micelles. The esterification of IND yielding to a nonionizable IND ethyl ester derivative (IND-Et) caused an abrupt decrease in the micellar loading capacity down to 10-15% w/wp. Similar results were also obtained when IND was combined with nonionizable block copolymers such as PEO-b-polycaprolactone (PEO-b-PCL) and PEO-b-poly(glycidyl methacrylate) (PEO-b-PGMA). The existence of acid-base interactions between the solubilizate and the weak polybase block forming the micelle core was confirmed by 1H NMR measurements. However, the incorporation of high numbers of hydrophobic guest molecules inside polymeric micelles can provoke not only an increase in the hydrodynamic size (2RH) of the objects but also a substantial change in the morphology (transition from spheres to cylinders). The application of the Higuchi model showed that the probe release followed a diffusion-controlled mechanism, and diffusion coefficients (D) on the order of 10-18-10-17 cm2/s were determined for IND release from 1.0 mg/mL PEO113-b-PDPA50 + 100% w/wp IND. Probe release from micelles with weak polybase-based cores can also be triggered by changes in the solution pH.  相似文献   

13.
Choline phosphate(CP) as a novel zwitterion possesses specific and excellent properties compared with phosphorylcholine(PC), as well as its polymer, such as poly(2-(methacryloyloxy)ethyl choline phosphate)(PMCP), has been studied extensively due to its unique characteristics of rapid cellular internalization via the special quadrupole interactions with the cell membrane. Recently, we reported a novel PMCP-based drug delivery system to enhance the cellular internalization where the drug was conjugated to the polymer via reversible acylhydrazone bond. Herein, to make full use of this feature of PMCP, we synthesized the diblock copolymer poly(2-(methacryloyloxy)ethyl choline phosphate)-b-poly(2-(diisopropylamino)ethyl methacrylate)(PMCP-b-PDPA), which could self-assemble into polymersomes with hydrophilic PMCP corona and hydrophobic membrane wall in mild conditions when the p H value is ≥ 6.4. It has been found that these polymersomes can be successfully used to load anticancer drug Dox with the loading content of about 11.30 wt%. After the polymersome is rapidly internalized by the cell with the aid of PMCP, the loaded drug can be burst-released in endosomes since PDPA segment is protonated at low p H environment, which renders PDPA to transfer from hydrophobic to hydrophilic,and the subsequent polymersomes collapse thoroughly. Ultimately, the "proton sponge" effect of PDPA chain can further accelerate the Dox to escape from endosome to cytoplasm to exert cytostatic effects. Meanwhile, the cell viability assays showed that the Dox-loaded polymersomes exhibited significant inhibitory effect on tumor cells, indicating its great potential as a targeted intracellular delivery system with high efficiency.  相似文献   

14.
Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-b-poly(epsilon-caprolactone) (PEG(5000)-b-PCL(x)) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy poly(ethylene glycol) (PEG-DSPE), possess small size and high thermodynamic stability, raising their potential as long circulating carriers in the context of delivery of antineoplastic and antibiotic drugs. Formation of mixed polymeric micelles was confirmed using size exclusion chromatography and 1H NMR NOESY. Steady-state fluorescence measurements revealed depressed critical micellar concentrations indicative of a cooperative interaction between component hydrophobic blocks, which was quantified using the pseudophase model for micellization. Steady-state fluorescence measurements indicated that the mixed polymeric micelle cores possess intermediate micropolarity and high microviscosity. Pulsed field gradient spin-echo measurements were used to characterize micellar diffusion coefficients, which agree well with those obtained using dynamic light scattering. NOE spectra suggested that the hydrophobic polymer segments from individual components are in close proximity, giving evidence for the formation of a relatively homogeneous core. Contrary to one-component PEG(5000)-b-PCL(x) micelles, the mixed polymeric micelles could incorporate clinically relevant levels of the poorly water soluble antibiotic, amphotericin B (AmB). AmB encapsulation and release studies revealed an interesting composition-dependent interaction of the drug with the mixed polymeric micelle core.  相似文献   

15.
We report the synthesis and characterization of the novel ligand H(5)EPTPA-C(16) ((hydroxymethylhexadecanoyl ester)ethylenepropylenetriaminepentaacetic acid). This ligand was designed to chelate the Gd(III) ion in a kinetically and thermodynamically stable way while ensuring an increased water exchange rate (kappa(ex)) on the Gd(III) complex owing to steric compression around the water-binding site. The attachment of a palmitic ester unit to the pendant hydroxymethyl group on the ethylenediamine bridge yields an amphiphilic conjugate that forms micelles with a long tumbling time (tau(R)) in aqueous solution. The critical micelle concentration (cmc = 0.34 mM) of the amphiphilic [Gd(eptpa-C(16))(H(2)O)](2-) chelate was determined by variable-concentration proton relaxivity measurements. A global analysis of the data obtained in variable-temperature and multiple-field (17)O NMR and (1)H NMRD measurements allowed for the determination of parameters governing relaxivity for [Gd(eptpa-C(16))(H(2)O)](2-); this is the first time that paramagnetic micelles with optimized water exchange have been investigated. The water exchange rate was found to be kappa(298)(ex) = 1.7 x 10(8) s(-1), very similar to that previously reported for the nitrobenzyl derivative [Gd(eptpa-bz-NO(2))(H(2)O)](2-) kappa(298)(ex) = 1.5 x 10(8) s(-1)). The rotational dynamics of the micelles were analysed by using the Lipari-Szabo approach. The micelles formed in aqueous solution show considerable flexibility, with a local rotational correlation time of tau(298)(l0) = 330 ps for the Gd(III) segments, which is much shorter than the global rotational correlation time of the supramolecular aggregates, tau(298)(g0) = 2100 ps. This internal flexibility of the micelles is responsible for the limited increase of the proton relaxivity observed on micelle formation (r(1) = 22.59 mM(-1) s(-1) for the micelles versus 9.11 mM(-1) s(-1) for the monomer chelate (20 MHz; 25 degrees C)).  相似文献   

16.
用静电纺丝-溶液浇注法制备胶原/聚2-甲基丙烯酰氧基乙基磷酰胆碱(pMPC)双层复合膜。用核磁共振波谱仪(NMR)、傅里叶变换红外光谱仪(FTIR)、热重分析仪(TG/DTG)分别表征了pMPC的化学结构、胶原/pMPC分子间的相互作用和共混相容性,用环境扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)、静态接触...  相似文献   

17.
The interaction of amphiphilic block copolymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous media has been studied by sedimentation in ultracentrifuge. Three well-defined populations of hybrid aggregates corresponding to micelles, micellar clusters, and supermicellar aggregates were detected in the PS-b-PEO/SDS aqueous solutions at various rotation rates. Parameters of all the micellar aggregates were characterized depending on the SDS loading. An increase in the SDS loading was found to result in an increase in block copolymer/surfactant micelle size and weight at the SDS concentration of 0.8x10(-3) mol/L and in a slight decrease of both parameters at critical micelle concentration and at higher concentration. This decrease was caused by incorporation of SDS molecules in block copolymer micelles followed by charging the PS core and repulsion between similar charges. Using dichlorotetrapyridine rhodium(III)chloride hexahydrate ([Rh(Py)(4)Cl(2)]Clx6H(2)O), ion exchange of surfactant counterions in the hybrid PS-b-PEO/SDS system for Rh cations was carried out, which allowed saturating the micellar structures with Rh species. Subsequent reduction of the Rh-containing hybrid solutions with NaBH(4) resulted in the formation of Rh nanoparticles with a diameter of 2-3 nm mainly located in the block copolymer micellar aggregates. Copyright 2000 Academic Press.  相似文献   

18.
Biodegradable and biomimetic SPCL-PLAMA biohybrids were synthesized via ATRP and characterized by FT-IR, (1)H NMR, GPC and DSC. Biohybrids with small PDI were obtained, and the block length of the PLAMA glycopolymer could be varied linearly by the varying the molar ratio of glycomonomer to macroinitiator. The outer PLAMA glycopolymer restrained the crystallization of inner PCL segments. The self-assembly properties of amphiphilic biohybrids were studied. Lactose-installed aggregates were fabricated in aqueous solution; they changed from spherical micelles to vesicles with increasing weight fraction of hydrophobic PCL. The SPCL-PLAMA biohybrids showed specific recognition for RCA(120) lectin.  相似文献   

19.
表面活性剂胶束形状随浓度转变的核磁共振研究   总被引:1,自引:0,他引:1  
运用核磁共振一维氢谱和自扩散实验方法研究了聚乙烯乙二醇异辛酚醚(TX-100)、十二烷基苯磺酸钠(SDBS)和十四烷基三甲基溴化铵(TTAB)三种不同类型的表面活性剂在重水溶液中的胶束形状转变, 发现它们在临界胶束浓度以上的各自相应浓度都有胶束形状的变化(由球状转变为椭球状或棒状). 在常温常压和没有其他添加剂的情况下, 表面活性剂溶液浓度高于其临界胶束浓度时, 球状胶束开始形成. 核磁共振一维氢谱和自扩散实验的结果显示, 当溶液浓度继续增加到一定程度时, 溶液中表面活性剂分子的化学位移和自扩散系数的变化速率都有明显的转折, 这说明溶液中球状胶束开始发生转变. 进一步通过仔细分析对比核磁共振一维氢谱中各基团谱峰, 发现表面活性剂胶束亲水表面上的质子的化学位移变化速率要远高于其疏水内核中的质子, 据此推测胶束形状很可能由球状转变为椭球状或棒状.  相似文献   

20.
An amphiphilic graft polyphosphazene (PNIPAm/EAB-PPP) composed of oligo-poly(N-isopropylacrylamide) (PNIPAm) as hydrophilic segments and ethyl 4-aminobenzoate (EAB) as hydrophobic groups was synthesized via ring-opening polymerization and subsequent substitution reaction. The molar ratio of the PNIPAm segment to EAB group was 1.85:0.15. The lower critical solution temperature (LCST) of copolymer was 32.6 degrees C as determined by turbidity method. Micellization behavior of PNIPAm/EAB-PPP in an aqueous phase was characterized by fluorescence technique, 1H NMR, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The critical micelle concentration (CMC) of the graft copolymer in aqueous solution was 0.1mg/ml. The number-averaged particle size of spherical micelles was 80 nm at 25 degrees C with a narrow distribution. TEM also revealed that inter-micellar aggregation was induced in the micelle solution at temperature above LCST of graft copolymer. The thermosensitive PNIPAm/EAB-PPP micelles may be of help to regulate the loading and release of hydrophobic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号