首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in situ polymerization functionalization of single‐walled carbon nanotubes (SWNT) with polystyrene (PS) is demonstrated utilizing stabilized nanotubes reduced by dissolution of excess lithium in ammonia. Short PS chains are tethered to SWNT sidewalls to facilitate a robust compatibilization strategy for nanotube dispersion. To augment extents of functionalization, while maintaining in situ dispersion stability, the effects of multiple monomer addition steps and varied carbon to lithium ratio are studied. The developed functionalization scheme is also effective for the reductive alkylation of SWNT with dodecyl surface groups. By studying the dodecylated SWNT, the molecular weight of grafted PS chains is estimated. The discovery of a general experimental artifact has implications for all functionalization routes utilizing reduction with lithium in ammonia. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3716–3725  相似文献   

2.
3.
The use of carbon nanotubes in materials applications has been slowed due to nanotube insolubility and their incompatibility with polymers. We recently developed two protocols to overcome the insoluble nature of carbon nanotubes by affixing large amounts of addends to the nanotube sidewalls. Both processes involve reactions with aryl diazonium species. First, solvent-free functionalization techniques remove the need for any solvent during the functionalization step. This delivers functionalized carbon nanotubes with increased solubility in organic solvents and processibility in polymeric blends. Additionally, the solvent-free functionalization process can be done on large scales, thereby paving the way for use in bulk applications such as in structural materials development. The second methodology involves the functionalization of carbon nanotubes that are first dispersed as individual tubes in surfactants within aqueous media. The functionalization then ensues to afford heavily functionalized nanotubes that do not re-rope. They remain as individuals in organic solvents giving enormous increases in solubility. This protocol yields the highest degree of functionalization we have obtained thus far-up to one in nine carbon atoms on the nanotube has an organic addend. The proper characterization and solubility determinations on nanotubes are critical; therefore, this topic is discussed in detail.  相似文献   

4.
5.
6.
7.
Single-walled carbon nanotubes (SWNTs) with amino acids covalently attached to their side walls, viz., “nanotube-aminoacids,” have been prepared starting from colloidal solutions of fluorinated SWNTs (F-SWNTs) and amino acids in o-dichlorobenzene and heating at 80–150 °C in the presence of pyridine. The syntheses were carried out with the F-SWNTs of approximately 2: 1 (C: F) stoichiometry and several natural α-aino acids with both pro-tected and unprotected carboxyl groups, such as glycine ethyl ester hydrochloride, L-serine ethyl ester hydrochloride, l-cysteine, and trans-4-hydroxy-l-proline. The nanotube-aminoacids have been characterized by Raman and FTIR spectroscopy, atomic force, scanning, and transmission electron microscopies, and thermal gravimetric analysis (TGA). Based on TGA data, the degree of sidewall functionalization in the synthesized SWNT derivatives was estimated to be in the range from one of 32 to one of 8 carbon atoms, depending on the amino acid nature and reaction conditions used. The amino acid-functionalized SWNTs, prepared in this work by simple and inexpensive one-step method, can be valuable precursors for peptide synthesis and targeted drug delivery, design and fabrication of nanocomposites and fibers, and other biomedical and engineering applications. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1035–1043, May, 2008.  相似文献   

8.
The addition of SH and OH groups to single‐wall carbon nanotubes (SWCNTs) was investigated employing first principles calculations. In the case of the semiconducting (10, 0) SWCNT the SWCNT‐SH binding energy is weak, 2–4 kcal/mol. However, for the metallic (5, 5) SWCNT it is larger, 7–9 kcal/mol. Thus metallic SWCNTs seem to be more reactive to SH than the semiconducting ones. Indeed, the (6, 6) SWCNT is more reactive to SH than the (10, 0) SWCNT, by 2–3 kcal/mol, something that can be explained only considering the electronic structure of the tube, because the (6, 6) has a larger diameter. The binding energies are larger for the addition of the OH group, 25 and 30 kcal/mol for the (10, 0) and (5, 5) SWCNTs, respectively. When a single OH or SH group is attached to the metallic SWCNTs, we observe important changes in the DOS at the Fermi level. However, when multiple SH groups are attached, the changes in the electronic and magnetic properties depend on the position of the SH groups. The small binding energy found for the SH addition indicates that the successful functionalization of SWCNTs with SH, SCH3, and S(CH2)nSH groups is mostly due to the presence of defects created after acid treatment and to a minor extent by the metallic tubes present in the samples. Perfect semiconducting SWCNTs showed very low reactivity against the SH group. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

9.
Surface functionalization of carbon nanotubes (CNTs) with a thermo responsive polymer was achieved via combination of mussel inspired chemistry and surface initiated single electron transfer living radical polymerization (SET‐LRP). In this procedure, CNTs were first coated with polydopamine (PDA) through self polymerization under a rather mild condition. And then PDA functionalized CNTs bearing with amino and hydroxyl groups were further reacted with bromo isobutyryl bromide. Finally, a thermo responsive polymer poly(N‐isopropylacrylamide) (PNIPAM) was introduced on the CNTs via SET‐LRP. The successful surface modification of CNT‐PDA‐PNIPAM was evidenced by a series of characterization techniques. The resulting CNT‐PDA‐PNIPAM showed significant enhancement of dispersibility in both aqueous and organic solvents. More importantly, these CNT‐polymer nanocomposites showed obvious thermo responsive behavior due to the surface coating CNTs with PNIPAM. As compared with previous methods, this method is not required oxidation of CNTs to introduce funcitonal groups for immobilization of the polymerization initiators. More importantly, this method could also be utilized for fabricating many other polymer nanocomposites because of the strong and universal adhesive of PDA to various materials. It is therefore, the novel strategy via marrying mussel inspired chemistry with SET‐LRP should be a simple, general and effective method for surface functionalization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1872–1879  相似文献   

10.
First principles calculations of the electronic structure and total energy of narrow zigzag carbon nanotubes and their corresponding flat graphene strips have been carried out to assess the relative stability of the tube form. The results indicate that the smallest energetically stable carbon nanotube has a radius of about 0.2 nm. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

11.
Carbon nanotubes have attracted great interdisciplinary interest because of their unique structure and properties. However, carbon-nanotube research is challenged by several problems, such as: i) mass production of material, ii) control of length, diameter, and chirality, and iii) manipulation for use in diverse technological fields. Issues regarding the synthesis and purification as well as the functionalization and solubilization of carbon nanotubes are relevant topics in this rapidly growing field. In this paper, covalent and noncovalent approaches to functionalized and solubilized nanotubes are examined in detail, with particular emphasis on the change of properties that accompany the chemical modification.  相似文献   

12.
The addition of primary, secondary, and tertiary alkyl radicals to single wall carbon nanotubes (SWCNTs) was studied by means of dispersion corrected density functional theory. The PBE, B97‐D, M06‐L, and M06‐2X functionals were used. Consideration of Van der Waals interactions is essential to obtain accurate addition energies. In effect, the enthalpy changes at 298 K, for the addition of methyl, ethyl, isopropyl, and tert‐butyl radicals onto a (5,5) SWCNT are: ?25.7, ?25.1, ?22.4, and ?16.6 kcal/mol, at the M06‐2X level, respectively, whereas at PBE/6‐31G* level they are significantly lower: ?25.0, ?19.0, ?16.7, and ?5.0 kcal/mol respectively. Although the binding energies are small, the attached alkyl radicals are expected to be stable because of the large desorption barriers. The importance of nonbonded interactions was more noticeable as we moved from primary to tertiary alkyl radicals. Indeed, for the tert‐butyl radical, physisorption onto the (11,0) SWCNT is preferred rather than chemisorption. The bond dissociation energies determined for alkyl radicals and SWCNT follow the trend suggested by the consideration of radical stabilization energies. However, they are in disagreement with some degrees of functionalization observed in recent experiments. This discrepancy would stem from the fact that for some HiPco nanotubes, nonbonded interactions with alkyl radicals are stronger than covalent bonds. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Controlled surface modification of nanocarbons is crucial for their use in applications. The paper deals with the functionalization of carbon nanotubes (CNTs) with HNO3 vapors. Sub‐azeotropic HNO3 + H2O + Mg(NO3)2 solution is used for the generation of nitric acid vapors. Because this approach allows tuning the HNO3 concentration in the vapor phase, the effect of its variation on the surface chemistry and structural properties of the CNTs is investigated. A combination of analytical techniques is applied to evaluate oxidation extent of the CNT surface, selectivity towards the formation of carboxyl groups compared with other oxygenated functionalities, and CNT integrity. The comparison with liquid‐phase functionalization in H2SO4 + HNO3 mixture (1 : 3–3 : 1 v/v), conventionally utilized for oxidizing CNTs, shows that vapor‐phase functionalization affords greater surface oxygen uptakes and higher selectivity towards the formation of carboxyl groups, with smaller tube damage; more importantly, it evidences that, regardless of the method and conditions chosen, the selectivity towards carboxyl groups increases linearly with the surface oxygen concentration. The presented results prove that the product of HNO3 concentration in the vapor‐phase (25–93 wt%) and vapor‐phase functionalization duration (0.5–5 h) controls the surface oxygen concentration. A simple rate model is proposed to account for its increase. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
We combine nanotechnology and chemical synthesis to create a novel multifunctional platinum drug delivery vehicle based on magnetic carbon nanotubes (multiwall carbon nanotubes/Fe3O4@poly(citric acid)/cis‐[(Pt(1,7‐phenanthroline)(DMSO)Cl2)]‐b‐poly(ethylene glycol) (MCNTs/FO@PC/Pt(II)‐b‐PEG)) for targeted cancer therapy. MCNTs/FO@PC/Pt(II)‐b‐PEG was conveniently prepared by conjugating cis‐[Pt(1,7‐phenanthroline)(DMSO)Cl2] complex to MCNTs/FO@PC‐b‐PEG via strong hydrogen‐bonding interactions. In comparison with free cisplatin and Pt(II) complex, MCNTs/FO@PC/Pt(II)‐b‐PEG shows higher solubility in aqueous solution and higher cytotoxicity towards human cervical cancer HeLa cells and human breast cancer MDA‐MB‐231 cells. In vitro release experiments revealed that the platinum drug‐loaded delivery system is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but susceptible to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of loaded drugs. Fluorescence microscopy studies revealed that this magnetic nanohybrid system possesses marked cell‐specific targeting in vitro in the presence of an external magnetic field. The results indicated that the prepared superparamagnetic MCNTs/FO@PC/Pt(II)‐b‐PEG nanohybrid system is a promising candidate for inhibiting the proliferation of cancer cells.  相似文献   

15.
Here we report quantitative data on the amount of single-walled carbon nanotubes that can be suspended with oligodeoxynucleotides in aqueous buffer, together with rate constants for the thermal denaturation of the resulting DNA-nanotube complexes at elevated temperatures. Sequence motifs d(GT)n and d(AC)n with n=2, 3, 5, 10, 20, or 40 were employed, both individually and as equimolar mixtures of the complementary strands. Unexpectedly, the greatest suspending efficiency was found for the mixture of short, complementary oligonucleotides d(GT)3 and d(AC)3. Unlike the suspending efficiency, the kinetic stability of the nanotube suspensions increases with increasing chain length of the DNA, with half life times of >25 h at 90 degrees C for the complexes of the longest strands. Our results identify a new, unexpected optimum in DNA sequence space for suspending carbon nanotubes. They also demonstrate that suspending power depends on the presence of complementary strands. Exploratory assays suggest that nanotubes can be deposited site-selectively from suspensions formed with short DNA sequences.  相似文献   

16.
Thermal cycloaddition of 1,3-dipolar azomethine ylides to the sidewalls of multiwalled carbon nanotubes (MWNTs) has been used to prepare MWNTs that contain 2-methylenethiol-4-(4-octadecyloxyphenyl) (4), N-octyl-2-(4-octadecyloxyphenyl) (5) or 2-(4-octadecyloxyphenyl)pyrrolidine (6) units. All these contain the 4-octadecyloxyphenyl substituent that acts as a solubilizing group. Microwave (MiW)-assisted heating was found to be highly efficient for soluble MWNTs, for which the amount of added groups after only 2 h of MiW heating at 200 degrees C, determined by using thermogravimetric analysis, was found to be in the same range as that obtained after 100-120 h of conventional heating of soluble and insoluble MWNTs. Solubility is a key feature for a successful MiW-heated reaction; MWNTs insoluble in the reaction medium yielded considerably less addends in the MiW-heated reactions than in the conventionally heated reaction. The location and even distribution of the pyrrolidine units over the outermost layer of the MWNTs was verified by transmission electron microscopy analysis of 4 that had been treated with gold nanoparticles and thoroughly washed to remove gold particles adsorbed on nonfunctionalized parts of the MWNTs.  相似文献   

17.
Whereas the chemistry of fullerenes is well-established, the chemistry of single-walled carbon nanotubes (SWNTs) is a relatively unexplored field of research. Investigations into the bonding of moieties onto SWNTs are important because they provide fundamental structural insight into how nanoscale interactions occur. Hence, understanding SWNT chemistry becomes critical to rational, predictive manipulation of their properties. Among the strategies discussed include molecular metal complexation with SWNTs to control site-selective chemistry in these systems. In particular, work has been performed with Vaska's and Wilkinson's complexes to create functionalized adducts. Functionalization should offer a relatively simple means of tube solubilization and bundle exfoliation, and also allows for tubes to be utilized as recoverable catalyst supports. Solubilization of oxidized SWNTs has also been achieved through derivatization by using a functionalized organic crown ether. The resultant adduct yielded concentrations of dissolved nanotubes on the order of 1 g L(-1) in water and at elevated concentrations in a range of organic solvents, traditionally poor for SWNT manipulation. To further demonstrate chemical processability of SWNTs, we have subjected them to ozonolysis, followed by treatment with various independent reagents, to rationally generate a higher proportion of oxygenated functional groups on the nanotube surface. This protocol has been found to purify nanotubes. More importantly, the reaction sequence has been found to ozonize the sidewalls of these nanotubes. Finally, SWNTs have also been chemically modified with quantum dots and oxide nanocrystals. A composite heterostructure consisting of nanotubes joined to nanocrystals offers a unique opportunity to obtain desired physical, electronic, and chemical properties by adjusting synthetic conditions to tailor the size and structure of the individual sub-components, with implications for self-assembly.  相似文献   

18.
19.
Mureau N  Mendoza E  Silva SR 《Electrophoresis》2007,28(10):1495-1498
We investigate the behavior of fluorescing single-walled carbon nanotubes (SWCNTs) under dielectrophoretic conditions and demonstrate their collection with fluorescence microscopy. SWCNTs are dispersed in water with the aid of a nonionic surfactant, Triton X-100, and labeled through noncovalent binding with the dye 3,3'-dihexyloxacarbocyanine iodide (diOC(6)). The chromophore's affinity to the SWCNTs is due to pi-stacking interactions. Carbon nanotube (CNT) localization is clearly identified on the fluorescence images, showing that the nanotubes concentrate between the electrodes and align along the electric field lines.  相似文献   

20.
During recent years, the direct transformation of aldehydes into esters or amides has developed into a vigorous research area and powerful one-pot oxidative esterification and amidation procedures have been reported. Several concepts that are often complementary in substrate scope, functional group tolerance, and reaction outcome have emerged, thus providing a wide range of alternatives to classical ester and amide synthesis via carboxylic acid intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号