首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
D.F. Zhou  Y.J. Xia  J.X. Zhu  J. Meng   《Solid State Sciences》2009,11(9):1587-1591
Ce6−xDyxMoO15−δ (0.0 ≤ x ≤ 1.8) were synthesized by modified sol–gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 °C and 800 °C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15−δ detected to be the best conducting phase with the highest conductivity (σt = 8.93 × 10−3 S cm−1) is higher than that of Ce5.6Sm0.4MoO15−δ (σt = 2.93 × 10−3 S cm−1) at 800 °C, and the corresponding activation energy of Ce5.6Dy0.4MoO15−δ (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15−δ (1.002 eV).  相似文献   

2.
The molecular structures, vibrational frequencies, and electron affinities of the SF5On/SF5On (n = 1–3) species have been examined with four hybrid density functional theory (DFT) methods. The basis set used in this work is of double-ζ plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The SF5On (n = 1–3) species should be potential greenhouse gases. The anion SF5O2 with Cs symmetry has a 3A″ electronic state, and the neutral SF5O3 with 2A″ electronic state has Cs symmetry. The anions SF5O2 and SF5O3 should be regarded as SF5·O2 and SF5O·O2 complexes, respectively. Three different types of the neutral–anion energy separation presented in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The EAad values predicted by the B3PW91 method are 5.22 (SF5O), 4.38 (SF5O2), and 3.61 eV (SF5O3). Compared with the experimental vibrational frequencies, the BHLYP method overestimates the frequencies, and the other three methods underestimate the frequencies. The bond dissociation energies De (SF5On → SF5Onm + Om) for the neutrals SF5On and De (SF5On → SF5Onm + Om and SF5On → SF5Onm + Om) for the anions SF5On are reported.  相似文献   

3.
Two isoelectronic series, Eu(Ga1−xTtx)2 (Tt=Si, Ge, 0≤x≤1), have been synthesized and characterized by powder and single-crystal X-ray diffraction, physical property measurements, and electronic structure calculations. In Eu(Ga1−xSix)2, crystal structures vary from the KHg2-type to the AlB2-type, and, finally, the ThSi2-type structure as x increases. The hexagonal AlB2-type structure is identified for compositions 0.18(2)≤x<0.70(2) with Ga and Si atoms statistically distributed in the polyanionic 63 nets. As smaller Si atoms replace Ga atoms while the number of valence electrons increases, the lattice parameters, unit cell volumes, and Ga–Si distances in this phase region decrease significantly. Although aspects of X-ray diffraction results suggest puckering of the 63 nets for the Si-richest example of the AlB2-type Eu(Ga1−xSix)2, the complete experimental evidence remains inconclusive. On the other hand, in Eu(Ga1−xGex)2, six different structural types were observed as x varies. In addition to EuGa2 (KHg2-type; space group Imma) and EuGe2 (own structure type, space group Pm1), the ternary phases studied show four different structures: the AlB2-type for Ga-rich compositions; the YPtAs-type structure for EuGaGe; and two new structures, which are intergrowths of the YPtAs-type EuGaGe and EuGe2, for Ge-rich compositions. These two Ge-rich phases include: (1) Eu(Ga0.45(2)Ge0.55(2))2 containing two YPtAs-type motifs of EuGaGe plus one EuGe2 motif; and (2) Eu(Ga0.40(2)Ge0.60(2))2 containing one YPtAs-type motif alternating with a split site at and z=0.4798(2) with ca. 50% site occupancy by Ga and Ge along the c-axis. Magnetic susceptibilities of three Eu(Ga1−xGex)2 compounds display Curie–Weiss behavior above ca. 100 K, and show effective magnetic moments indicative of divalent Eu with a 4f7 electronic configuration, consistent with. X-ray absorption spectra (XAS). Density of states (DOS) and crystal orbital Hamilton population (COHP) analyses, based on first principles electronic structure calculations, rationalize the observed homogeneity ranges of the AlB2-type phases in both systems and the structural variations as a function of Tt content.  相似文献   

4.
Complete active space self-consistent-field (CASSCF) approach has been used for the geometry optimization of the X2Σ+ and A2Π electronic states for the linear magnesium-containing carbon chains MgC2nH (n = 1–5). Multireference second-order perturbation theory (CASPT2) has been used to calculate the vertical excitation energies from the ground to selected seven excited states, as well as the potential energy curves of two 2Σ+ and two 2Π electronic states. The studies indicate that the vertical excitation energies of the A2Π ← X2Σ+ transition for MgC2nH (n = 1–5) are 2.837, 2.793, 2.767, 2.714, and 2.669 eV, respectively, showing remarkable linear size dependence. Compared with the previous TD-DFT and RCCSD(T) results, our estimates for MgC2nH (n = 1–3) are in the best agreement with the available observed data of 2.83, 2.78, and 2.74 eV, respectively. In addition, the dissociation energies in MgC2nH (n = 1–5) are also been evaluated.  相似文献   

5.
The resistivity of Bi1.6Pb0.5Sr2−xEuxCa1.1Cu2.1O8+δ (0.000 ≤ x ≤ 0.180) superconductor has been measured as a function of temperature and magnetic field. The resistivity shows a glassy behavior even at higher temperatures and magnetic fields for the Eu-doped samples as compared with the Eu free sample. The values of glass-transition temperature [Tg], magnetic field dependent activation energy [U0(B)] and the temperature and magnetic field dependent activation energy [U0(B,T)] are found to be maximum for optimal doping levels (x = 0.135) which shows that the flux lines are effectively pinned in this sample. Also for temperatures below the superconducting transition temperature (TC), a scaling of measured resistivity curves in magnetic field (B = 0.4 and 0.8 T) is obtained and this scaling is quite useful for better understanding of the behavior of the flux vortices in high temperature superconductors.  相似文献   

6.
The density functional theory (DFT) and the complete active space self‐consistent‐field (CASSCF) method have been used for full geometry optimization of carbon chains C2nH+ (n = 1–5) in their ground states and selected excited states, respectively. Calculations show that C2nH+ (n = 1–5) have stable linear structures with the ground state of X3Π for C2H+ or X3Σ? for other species. The excited‐state properties of C2nH+ have been investigated by the multiconfigurational second‐order perturbation theory (CASPT2), and predicted vertical excitation energies show good agreement with the available experimental values. On the basis of our calculations, the unsolved observed bands in previous experiments have been interpreted. CASSCF/CASPT2 calculations also have been used to explore the vertical emission energy of selected low‐lying states in C2nH+ (n = 1–5). Present results indicate that the predicted vertical excitation and emission energies of C2nH+ have similar size dependences, and they gradually decrease as the chain size increases. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

7.
Crystal structure, redox, and magnetic properties for the Pr1−xSrxFeO3−δ solid-solution phase have been studied. Oxidized samples (prepared in air at 900°C) crystallize in the GdFeO3-type structure for 0≤x≤0.80, and probably in the Sr8Fe8O23-type (unpublished) structure for x=0.90. Reduced samples (containing virtually only Fe3+) crystallize as the perovskite aristotype for x=0.50 and 0.67 with randomly distributed vacancies. The Fe4+ content increases linearly in the oxidized samples up to x≈0.70, whereupon it stabilizes at around 55%. Antiferromagnetic ordering of the G type is observed for oxidized samples (0≤x≤0.90) which show decreasing Néel temperature and ordered magnetic moment with increasing x, while the Néel temperature is nearly constant at 700 K for reduced samples. Electronic transitions for iron from an average-valence state via charge-separated to disproportionated states are proposed from anomalies in magnetic susceptibility curves in the temperature ranges 500–600 K and 150–185 K.  相似文献   

8.
A new defect solid solution, the series Na7/8(FeIII7/8+xTiIV9/8−2xSbVx)O4, was synthesized. Its homogeneity range is rather wide: 0 <- x ≤ 0.33. The incorporation of SbV gives rise to a progressive increase of the parameters of the orthorhombic unit cell. X-ray powder structure calculations point to a partial occupancy of the large double tunnels in a quadruple rutile-chain structure. A significant ordering of cations over the octahedral framework is observed, owing to a TiIV---SbV segregation. Electrical measurements emphasize a cationic conductivity, mainly related to a 1D motion of NaI cations. A transition from a low activation energy process—EA ≤ 0.20 eV—to a high activation energy one—EA ≈ 0.75 eV—systematically occurs at T ≈ 440°C, independent of the SbV concentration. A possible skew motion from a half tunnel to another one is proposed as a tentative explanation of the high-temperature conductivity mechanism.  相似文献   

9.
Nanosized Fe2O3 clusters are pillared in the interlayer spaces of layered perovskites, H1−xLaxCa2−xNb3O10 (0≤x≤0.75) by a guest-exchange reaction using the trinuclear acetato-hydroxo iron cation, [Fe3(OCOCH3)7 OH·2H2O]+. The interlayer spaces of niobate layers are pre-expanded with n-butylammonium cations (n-C4H9NH+3), which are subsequently replaced by bulky iron pillaring species to form Fe(III) complex intercalated layer niobates. Upon heating at 380°C, the interlayered acetato-hydroxo iron complexes are converted into Fe2O3 nanoclusters with a thickness of ca. 3.5 Å irrespective of the interlayer charge density (x). The band-gap energy of the Fe2O3 pillars (Eg2.25 eV) is slightly larger than that of bulk Fe2O3 (Eg2.20 eV) but is smaller than that expected for such a small-sized semiconductor, which can be assigned to the pancake-shaped Fe2O3 pillars of 3.5 Å in height with comparatively large lateral dimension. X-ray absorption spectroscopic measurements at the Fe K-edge are carried out in order to obtain structural information on the Fe2O3 pillars stabilized between the niobate layers. XANES analysis reveals that the interlayer FeO6 octahedra have coordination environments similar to that of bulk α-Fe2O3, but noncentrosymmetric distortion of interlayered FeO6 is enhanced due to the asymmetric electric potential exerted by the negatively charged niobate layers. Scanning electron microscopic observation and nitrogen adsorption–desorption isotherm measurement suggest that the pillared derivatives are nanoporous materials with the highest BET specific surface area of ca. 116 m2/g.  相似文献   

10.
In this work we report the structures and stabilities of linear carbon clusters HC2nS (n = 1–5) in their ground states using the B3LYP density functional. The rotational constants at the optimized geometries give excellent agreement with the experimental and previous theoretical values. The vertical excitation energies of the 22Π ← X2Π transitions at the CASPT2 level are 3.16, 2.66, 2.05, 1.78, and 1.55 eV, respectively, in good agreement with the corresponding observed values of 3.01, 2.48, 2.10, 1.84, and 1.65 eV. Also, the exponential-decay curves for these vertical excitation energies obtained from experiments and theoretical calculations are illuminated.  相似文献   

11.
Capillary zone electrophoresis (CZE) was investigated for the determination of linear saturated carboxylic acid homologues ranging from C4 to C14. Separation conditions were optimised to overcome the problems of decreasing solubility and decreasing selectivity between successive homologues with increasing chain length. Separations were performed at 20°C, using a 20 kV separation voltage and a pH 8 electrolyte containing 30% methanol. A suitable chromophore (4-aminobenzoate) was added to ensure indirect UV detection of the analytes. Calibration curves and repeatability were established. Minimum detectable concentrations of 3·10−6 mol l−1 were achieved. Resolution between successive homologues was better than 2. The electrophoretic mobility of each homologue (n=7–14) was assessed and a quasi-linear relationship between the mobility value and 1/n was observed. The quantitative analysis of a diamide degradation solution was performed and compared to potentiometric results. The CZE method was also applied to the determination of C7–C14 partitioning between an organic medium containing tributylphosphate in n-dodecane and different basic solutions. Their behaviour was established according to the chain length and the pH of the aqueous phase. For C10–C14 compounds, results were validated by comparison with gas chromatographic analysis of the organic phases.  相似文献   

12.
A mixture of lanthanum oxide (La2O3), chloride (LaCl3), and bromide (LaBr3) was ground in air by a planetary ball mill to investigate synthesis of lanthanum oxychloride (LaOCl), oxybromide (LaOBr), and their solid solutions, LaOCl1−xBrx (0≤x≤1, Δx=0.25). The synthesizing reactions proceed with an increase in grinding time. Unit cell dimensions, a, c, and lattice volume of the solutions evolve linearly with an increase in x in the LaOCl1−xBrx series. Comparing unit cell dimensions of LaOX synthesized by mechanochemical reaction to those of LaOX synthesized by solid-state reaction at high temperature, there is no difference in the length of c, while a is shortened slightly. This may be attributed to the complex cation layer of (LaO)n+n, with a close relationship to a of the cell dimensions, being affected by the intensive grinding.  相似文献   

13.
The emission from the first negative system, N2+(B 2Σ+u)→N2+(X 2Σ+g)+, is studied in the flowing nitrogen afterglow of a DC arc plasma. Investigation of the spectrum shows overpopulation of the vibrational levels 6 and 7 of the excited molecular ion, N2+(B 2Σ+u). Selective excitation of these levels is explained by a charge exchange reaction between atomic ions in the ground state and metastable molecules in the N2(A 3Σ+u) state. The emitted intensity of the first negative system is shown to be linear with electron density ne for ne>2×1016 m−3, a higher-order dependence exists below this value. This is consistent with population of N2+(B 2Σ+u) by atomic ions, N+.  相似文献   

14.
In this paper, we report the design of models for interstellar molecules HCnN (n = 1–17) by means of the B3LYP density functional method. We performed geometry optimization and calculation on vibrational frequency. We find that the ground-state (G-S) isomers of HCnN (n = 1–17) are with the N atom located at one end and the H atom at the other end of a Cn chain; they are all linear except for HC2N which is bent. When n is odd, the Cn chain is polyacetylene-like whereas when n is even, the Cn chain displays a structure that is cumulenic-like in the middle of the Cn chain. It is found that the G-S isomers of odd-n HCnN (n = 1–17) are more stable than those of even-n ones. The finding is in accord with the relative intensities of HCnN recorded in laboratory investigations, and in consistent with the results of objects observed in interstellar media. We provide explanations for such a trend of even/odd alternation based on concepts of the highest vibrational frequency, bonding character, electronic configuration, incremental binding energy, nucleus-independent chemical shift, and dissociation channels.  相似文献   

15.
The electrochemical reduction of the black dye photosensitizer [(H3-tctpy)RuII(NCS)3] (H3-tctpy=2,2′:6′,2′′-terpyridine-4,4′,4′′-tricarboxylic acid) used in photovoltaic cells has been found to be a complex process when studied in dimethylformamide. At low temperatures, fast scan rates and at a glassy carbon electrode, the chemically reversible ligand based one-electron reduction process [(H3-tctpy)Ru(NCS)3]+e[(H3-tctpy√)Ru(NCS)3]2− is detected. This process has a reversible half-wave potential (Er1/2) of −1585±20 mV versus Fc/Fc+ at 25°C. Under other conditions, a deprotonation reaction occurs upon reduction, which produces [(H3−x-tctpyx)Ru(NCS)3](1+x)− and hydrogen gas. Mechanistic pathways giving rise to the final products are discussed. The Er1/2-value for the ligand based reductions of the deprotonated complex is 0.70 V more negative than for [(H3-tctpy)Ru(NCS)3]. Consequently, data obtained from molecular orbital calculations are consistent with the reaction [(H3-tctpy)Ru(NCS)3]+e→[(H2-tctpy)Ru(NCS)3]2−+1/2H2 yielding the monodeprotonated complex as the major product obtained after electrochemical reduction of [(H3-tctpy)Ru(NCS)3]. The Er1/2-values for the metal based RuII/III process differ by 0.30 V when data obtained for the protonated and deprotonated forms of the black dye are compared. Electronic spectra obtained during the course of experiments in an optically transparent thin layer electrolysis configuration are consistent with the overall reaction scheme proposed on the basis of voltammetric measurements and molecular orbital calculations. Reduction studies on the free ligand, H3-tcpy, are consistent with results obtained with [(H3-tctpy)Ru(NCS)3].  相似文献   

16.
Variation of the phases of Nd2NiO4+δ with the excess oxygen concentration δ has been examined at room temperature in the range 0.067≤δ≤0.224 using the X-ray powder diffraction technique. The phases observed at room temperature are orthorhombic-I (0.21<δ≤0.224), orthorhombic-IV (0.175<δ≤0.21), orthorhombic-II (0.15<δ≤0.175), orthorhombic-II+quasi-tetragonal-I (0.10<δ≤0.15), and quasi-tetragonal-I (0.067<δ≤0.10).  相似文献   

17.
For La1−xThxNbO4+x/2, three phases with broad homogeneity regions occur, for 0.075 ≤ x ≤ 0.37, 0.41 < x < 0.61, and 0.65 ≤ x ≤ 0.74. All are related to the scheelite structure type, with at least the first exhibiting an incommensurate structural modulation. An analogous structurally modulated phase was found for LaNb1−xWxO4+x/2 for 0.11 ≤ x ≤ 0.22. Additional phases occur at La0.2Th0.8NbO4.4 and LaNb0.4W0.6O4.3. The electrical conductivity and the direction and wavelength of the structural modulation have been characterized for the La1−xThxNbO4+x/2 phase with 0.075 ≤ x ≤ 0.37.  相似文献   

18.
The new salt, tetra-n-butylammonium bis(benzene-1,2-dithiolato(2−)-κ2S,S′)platinate(III), [NBu4][Pt(C6H4S2)2] (1), has been synthesized in ethanol/water, and fully characterized by single crystal X-ray structure determination. The central platinum in the complex ion [Pt(bdt)2] is tetracoordinated by the S atoms of the bdt2− ligands (bdt2− is benzene-1,2-dithiolate) in a square-planar geometry. The well-resolved frozen solution EPR spectrum exhibits rhombic symmetry. The room temperature effective magnetic moment (μeff = 1.80 Bohr magneton) is in line with this spectrum and strongly supports the Pt(III) oxidation state in 1. This observation is in excellent agreement with previous results reported on closely related Ni(III), Pd(III) and Pt(III) species.  相似文献   

19.
Chloride abstraction from [{M(η3 --- C3H5)Cl}n] (M = Pt, n = 4 or M = Pd, n = 2) by (NBu4)2[cis-Pt(C6F5)2(CCSiMe3)2] (1) gives rise to novel homo- and hetero-dinuclear zwitterionic derivatives (NBu4) [{cis-Pt(C6F5)2(CCSiMe3)2}M(η3-C3H5)] (M = Pt 2; M = Pd 3) which are formed by a M(η3-allyl)+ unit attached to both alkynyl ligands of the {cis-Pt(C6F5)2(CCSiMe3)2}2− fragment. The structure of 3 has been established by X-ray diffraction.  相似文献   

20.
Using the specific functional form D(C)/D0=1+(αC)−β(αC)2 an investigation has been made of (isothermal) transport through a slab membrane under ‘simple’ boundary conditions and governed by a diffusion coefficient, D(C), which, with increasing concentration, at first increases, passes through a maximum value and finally decreases. The flux, integral diffusion coefficient and concentration profile characteristic of steady-state permeation have been evaluated; special attention has been paid to the positions of such profiles in relation to the corresponding linear distribution associated with a constant diffusion coefficient.The corresponding transient-state transport has been studied within a framework of the time-lag ‘early-time’ and ‘ ’ procedures. Expressions for the ‘adsorption’ and ‘desorption’ time-lags are given. The concentration-dependence of these time-lags, of the (four) integral diffusion coefficients derived from them and of the arithmetic-mean time-lag ratios have been considered in some detail. The ‘early-time’ and ‘ ’ finite-difference procedures have likewise been employed to derive four further integral diffusion coefficients, so enabling a comparison to be made of the nine integral coefficients pertaining to established experimental techniques.Particular interest attaches to the situation for which n≡β(αC0)=1 (where C0 is the ingoing or upstream concentration of diffusant) resulting in D(C0) being symmetrical about C0/2. Some consideration has been given, in general, to features of transient-state transport when governed by a symmetrical D(C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号