首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative low energy electron diffraction has been used to determine the structure of the Ni(1 1 1)(√3×√3)R30°-Sn surface phase. The results confirm that the surface layer comprises a substitutional alloy of composition Ni2Sn as previously found by low energy ion scattering (LEIS), and also shows that there is no stacking fault at the substrate/alloy interface as has been found in (√3×√3)R30°-Sb surface alloys on Ag and Cu(1 1 1). The surface alloy layer is rumpled with the Sn atoms 0.45 ± 0.03 Å higher above the substrate than the surrounding Ni atoms. This rumpling amplitude is almost identical to that previously reported on the basis of the LEIS study. Comparison with similar results for Sn-induced surface alloy phases on Ni(1 0 0) and Ni(1 1 0) shows a clear trend to reduced rumpling with reduced surface atomic layer density, an effect which can be rationalised in terms of the different effects of valence electron charge smoothing at the surface.  相似文献   

2.
The local surface structures of S/Ni(111) in the ( √3 × √3) R30° and (5√3 × 2) phases have been investigated by means of polarization-dependent sulfur K-edge surface EXAFS. In the (√3 × √3 ) R30° phase, sulfur adatoms are found to occupy threefold hollow sites with a S---Ni distance of 2.13 Å and an inclination angle ω of the Sz.sbnd;Ni bonds at 44° from the surface plane. In contrast, in the (5√3 × 2) phase, it is determined that the Sz.sbnd;Ni bond is longer, 2.18 Å, more inclined, ω = 31°, and that the coordination number is not 3 but 4. These results strongly support a picture involving reconstruction of the top nickel layer to form a rectangular structure. Consideration of several models proposed for the (5√3 × 2) phase leads to one which is compatible with both the present results and results recently reported using STM.  相似文献   

3.
The local geometry of OH fragments adsorbed on the Ge(0 0 1)(2 × 1) surface has been examined using O 1s scanned energy mode photoelectron diffraction. These fragments were obtained by the dissociative reaction of the clean surface with H2O. The Ge–O bond length is found to be 1.76 ± 0.02 Å and the Ge–O bond angle to be 15° ± 2° relative to the surface normal. Some information about the positions of the Ge dimer atoms has also been obtained.  相似文献   

4.
The adsorption of atomic S on the Fe(1 1 0) surface is examined using density functional theory (DFT). Three different adsorption sites are considered, including the atop, hollow and bridge sites and the S is adsorbed at a quarter monolayer coverage in a p(2 × 2) arrangement. The hollow site is found to be the most stable, followed by the bridge and atop sites. At all three sites, S adsorption results in relatively minor surface reconstruction, with the most significant being that for the hollow site, with lateral displacements of 0.09 Å. Comparisons between S-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the S. At the hollow site, the presence of S causes an increase in the surface Fe d-orbital density of states between 4 and 5 eV. However, S adsorption has no significant effect on the structure and magnetic properties of the lower substrate layers.  相似文献   

5.
A tensor LEED analysis is reported for the Rh(111)-(2 × 1)---O surface structure in which atoms in the O overlayer chemisorb close to the regular (fcc type) three-fold hollow sites for half-monolayer coverage. The structure shows significant relaxations: for example, a buckling of about 0.07 Å is indicated in the first metal layer and O appears to displace laterally by about 0.05 Å. The individual O---Rh bond lengths are around 2.01 and 1.92 Å to top layer Rh atoms, which bond to two and one O atoms, respectively, but the average value (1.98 Å) is close to that in bulk RhO2 (1.96 Å). Comparison is also made with the previously determined O---Rh bond lengths in the Rh(110)-p2mg(2 × 1) surface structure.  相似文献   

6.
The 180° low energy impact collision ion scattering spectroscopy with detection of noble gas neutrals (180°-NICISS) has been used to investigate the nitrogen saturated Cu(110) surface, which is known to exhibit a (2 × 3) diffraction pattern. The nitrogen induced (2 × 3) phase appears to be the result of a surface reconstruction of a new missing row type, in which every third 100 row of Cu atoms of the first layer is missing. The 180° NICISS patterns further indicate within an accuracy of 0.1–0.2 Å, that the double periodicity in the [1 0] direction is not due to the reconstruction of the Cu surface. Its origin has to be found in the arrangement of the N atoms.  相似文献   

7.
The growth of PbI2 precipitates on single crystal substrates from colloidal solutions has been investigated with in air scanning tunneling microscopy and synchrotron-based X-ray photoelectron spectroscopy. The PbI2 growth on Rh(1 0 0) results in nano-clusters with lateral dimensions between 30 and 60 Å, consistent with earlier reports. However, the growth of PbI2 on a well-ordered iodinated Rh(1 0 0), denoted as (√2×√2)R45°-I, leads to atomically smooth PbI2 films having a hexagonal symmetry with lattice constant identical to the bulk value of 4.5 Å. The heteroepitaxy is believed to be effected by the atomic iodine monolayer that helps to accommodate large lattice mismatch between PbI2 and Rh surface with short-range van der Waals interaction.  相似文献   

8.
The surface structures of R30°-S and R19.1°-S on Pd(111) have been investigated by normal incidence X-ray standing wave (NIXSW) absorption and surface extended X-ray absorption fine structure (SEXAFS). NIXSW measurements show that the most likely site of S adsorption in the R30° phase is the threefold “fcc” hollow. The location of the S atoms at the “fcc” hollow site is consistent with S adsorption on the neighbouring fcc (111) transition metal surfaces. SEXAFS analysis revealed a S–Pd nearest neighbour bond distance of 2.28±0.04 Å. The results for the R19.1° phase suggest that the structure involves a mixed S–Pd overlayer, with the S–Pd vertical layer spacing equal to the Pd bulk 111 spacing.  相似文献   

9.
A tensor LEED analysis is reported for the Zr(0001)-(1 × 1)-O surface which involves oxygen at a total coverage of 2 monolayers. The structure is indicated to have two layers of O: one forms an overlayer in which the O atoms bond to hollow sites of three-fold coordination on the regular metal surface, while the other layer has the O atoms in tetrahedral hole sites between the first and second metal layers. The stacking sequence, designated as (C)B(A)AB... corresponds to the first three layers of anion-terminated cubic ZrO2, although some lateral compression is needed for superposition on the regular hcp Zr structure. The absorption of O in the tetrahedral holes results in a significant expansion in the first-to-second Zr---Zr interlayer spacing to about 3.44 Å from the bulk vaue of 2.57 Å. The O---Zr bond lengths are estimated to equal 2.07 Å for the overlayer O atoms, and 2.21 Å for the O atoms in tetrahedral hole sites. Comparisons are made with the structures of the corresponding 0.5 and 1 ML surfaces formed by the O/Zr(0001) system.  相似文献   

10.
The surface structure and properties of the HfB2(0 0 0 1) (Hafnium diboride, HfB2) surface have been investigated with X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Annealing temperatures above 1900°C produce a sharp (1×1) LEED pattern, which corresponds to STM images showing flat (0 0 0 1) terraces with a very low contamination level separated by steps 3.4 Å in height, corresponding to the separation of adjacent Hf planes in the HfB2 bulk structure. For lower annealing temperatures, extra p(2×2) spots were observed with LEED, which correspond to intermediate terraces of a p(2×1) missing row structure as observed with STM.  相似文献   

11.
The local adsorption geometry of CO adsorbed in different states on Ni(1 0 0) and on Ni(1 0 0) precovered with atomic hydrogen has been determined by C 1s (and O 1s) scanned-energy mode photoelectron diffraction, using the photoelectron binding energy changes to characterise the different states. The results confirm previous spectroscopic assignments of local atop and bridge sites both with and without coadsorbed hydrogen. The measured Ni–C bondlengths for the Ni(1 0 0)/CO states show an increase of 0.16 ± 0.04 Å in going from atop to bridge sites, while comparison with similar results for Ni(1 1 1)/CO for threefold coordinated adsorption sites show a further lengthening of the bond by 0.05 ± 0.04 Å. These changes in the Ni–CO chemisorption bondlength with bond order (for approximately constant adsorption energy) are consistent with the standard Pauling rules. However, comparison of CO adsorbed in the atop geometry with and without coadsorbed hydrogen shows that the coadsorption increases the Ni–C bondlength by only 0.06 ± 0.04 Å, despite the decrease in adsorption energy of a factor of 2 or more. This result is also reproduced by density functional theory slab calculations. The results of both the experiments and the density functional theory calculations show that CO adsorption onto the Ni(1 0 0)/H surface is accompanied by significant structural modification; the low desorption energy may then be attributed to the energy cost of this restructuring rather than weak local bonding.  相似文献   

12.
K. Berge  A. Goldmann   《Surface science》2003,540(2-3):343-354
We have used angle-resolved photoelectron spectroscopy to investigate the occupied antibonding electron states of the Ag(1 1 0)(n×1)O surface along different directions in the surface Brillouin zone. We present experimental evidence that several earlier results obtained along (along the Ag–O chains) contain admixtures from contamination, most probably from carbonate-like contributions. New results are obtained along and (perpendicular to the chains). These data indicate that the n=2 structure is stabilized by repulsive electronic interaction between neighbouring chains, which diminishes drastically for n=3 and disappears almost completely at n4. This observation points to a strain field within the substrate which stabilizes the geometry between n=3 (interchain distance 8.7 Å) and n=8 (23.1 Å). Its existence is indirectly seen in the n-dependence of the surface phonon energies at , which can be explained quantitatively by umklapp-processes induced by the lateral periodicity of the strain field. We compare our photoemission results for (2 × 1)O with available surface band structure calculations.  相似文献   

13.
We present extended X-ray absorption fine structure (EXAFS) and photoluminescence (PL) analyses of Er–O and Er–F co-doped Si. Samples were prepared by multiple implants at 77 K of Er and co-dopant (O or F) ions resulting in the formation of a2 μm thick amorphous layer uniformly doped with 1×1019 Er/cm3 and 3×1019 O/cm3, 1×1020 O/cm3 or 1×1020 F/cm3. EXAFS measurements show that the local environment of the Er sites in the amorphous layers consists of 6 Si first neighbors. After epitaxial regrowth at 620°C for 3 h, Er is fully coordinated with 8 F ions in the Er–F samples, while Si and O ions are concomitantly present in the first shell of O co-doped samples. Post regrowth thermal treatments at 900°C leave the coordination unchanged in the Er+F, while the Er+O (ratio 1 : 10) doped samples present Er sites with a fully O coordinated shell with an average of 5 O atoms and 4 O atoms after 30 s and 12 h, respectively. We have also found that the fine structure and intensity of the high-resolution PL spectra are strongly dependent on the Er-impurity ratio and on thermal process parameters in the Er–O co-doped samples, while this is not observed for the F-doped samples. The most intense PL response at 15 K was obtained for the 1 : 3 E : O ratio, suggesting that an incomplete O shell around Er is particularly suitable for optical excitation.  相似文献   

14.
Detailed studies of the structures formed by the electrodeposition of atomic layers of Te on Au(1 1 1) surfaces from aqueous solutions were performed using in situ scanning tunneling microscopy (STM), as well as by UHV-EC techniques such as low energy electron diffraction and Auger electron spectroscopy. There are two features in the voltammetry that may be considered underpotential deposition (UPD). However, from the voltammetry, it is clear that the deposition process is kinetically slow, and from this study it appears that several atomic layer structures are actually formed at overpotentials. Prior to deposition, a surface excess of a tellurium oxide species coats the surface. This layer is then converted to a Au(1 1 1)(√3×√3)R30°–Te structure with an array of domain walls, at 1/3 ML. The initial structure appears to have a symmetric array of walls, resulting in a (13×13) periodicity, which then converts to a less symmetric structure where the domain walls form rhombi, with a larger periodicity. During the second UPD feature, the coverage increases, forming a (√7×√13) unit cell at 0.36 ML and then a (3×3) at 0.44 ML. Commensurate with the formation of these higher coverage structures, a roughening transition takes place, where the surface becomes pitted, resulting in about 40% of the surface being covered with single atom deep pits. This process appears to be related to the pits formed in the surfaces of self-assembled monolayers (SAM) of thiols on Au surfaces, and layers of Se and S on Au surfaces. Several theories have been suggested to account for these pits. The model that appears to best explain the pits is based on shrinking of the size of the underlying Au atoms, reconstructing the underlying Au. There also appears to be a high coverage structure, near 0.9 ML, that forms at potentials near where the (3×3) forms, but only by holding the potential for an extended period of time. Subsequent dissolution of this high coverage structure produces domains of disordered Te atoms, which gradually decrease in coverage until the (3×3) is again formed at 0.44 ML.  相似文献   

15.
A comprehensive study of the local and supramolecular adsorption structures created by the chiral R- and S-enantiomers of alanine on the Cu(1 1 0) surface has been conducted using a multi-technique approach, including reflection absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM). Over the entire 300–470 K temperature range studied, the amino acid is found to adsorb as an alaninate species with a local chiral adsorption motif. However, this singular preference of local chemical form contrasts sharply with the supramolecular organisation at the surface where polymorphism is exhibited. This polymorphic behaviour arises from subtle and dynamic changes in the bonding, orientation and adsorption footprints of individual molecules, leading to alterations in the molecule–metal, intermolecular and metal–metal interactions that dictate self-assembly. Thus, at low coverage, a single disordered phase is observed but at higher coverage, three other temperature dependent phases occur. At room temperature, a two-dimensional equivalent of a ‘nematic’ phase is constructed from short single- and double-chain chiral assemblies that possess a preferred chiral orientation but no long range periodicity. This ‘nematic’ phase acts as a precursor to a highly ordered chiral supramolecular assembly, created at 430 K, that consists of regular arrays of size- and shape-defined chiral clusters. This phase possesses global organisational chirality with only one chiral domain observed for each enantiomer. For both the ‘nematic’ and the highly ordered chiral phase, the organisation for the R-enantiomer is the mirror image of that seen for the S-enantiomer, i.e., there is chirality transfer from the nanoscale to the macroscale. By 470 K, both R- and S-alanine form an achirally organised (3 × 2) structure that appears to be the thermodynamically favoured phase for the alanine/Cu(1 1 0) system. The supramolecular organisation and chirality of the various structures are discussed in terms of the molecular chirality and footprint chirality of the alaninate, together with possible intermolecular interactions and reconstructions of the underlying metal surface atoms. A number of candidate models for the system are suggested, but it is clear that a full understanding of this complex adsorption system will only emerge from further careful, high level experimental and computational efforts that currently remain a challenge.  相似文献   

16.
The Sb adsorption process on the Si(1 1 1)–In(4×1) surface phase was studied in the temperature range 200–400 °C. The formation of a Si(1 1 1)–InSb (2×2) structure was observed between 0.5 and 0.7 ML of Sb. This reconstruction decomposes when the Sb coverage approaches 1 ML and Sb atoms rearrange to and (2×1) reconstructions; released In atoms agglomerate into islands of irregular shapes. During the phase transition process from InSb(2×2) to Sb (θSb>0.7 ML), we observed the formation of a metastable (4×2) structure. Possible atomic arrangements of the InSb(2×2) and metastable (4×2) phases were discussed.  相似文献   

17.
We investigated the adsorption of sodium on the (1 0 0) surface of germanium with LEED, STM and electron spectroscopy (XPS). Upon adsorption at room temperature a metastable p(4 × 1) and a p(2 × 1) superstructure have been found. Annealing of these structures, accompanied by thermal desorption, results in the formation of a commensurate p(3 × 2) phase after an incommensurate state has been passed. The formation of structures observed after annealing requires the rearrangement of substrate atoms. In addition strong evidence was found that all ordered phases discussed in this paper contain one adsorbate atom per unit mesh.  相似文献   

18.
A quantitative structure determination of a newly discovered (2×2) adsorption phase of acetylene chemisorbed on Pd{111} has been performed by scanned-energy mode photoelectron diffraction: this phase corresponds to the threshold coverage for the catalytic conversion of acetylene to benzene. The carbon atoms in the C2H2 molecule are located almost over bridge sites with a C–C bond length of 1.34+0.10 Å, the centre of the molecule being positioned almost over a hollow site. Of the two hollow sites the hcp site (directly above a second layer Pd atom) is favoured, particularly by a subset of the data most sensitive to this aspect of the structure, but the full analysis indicates that the fcc site (above a third layer Pd atom) cannot formally be excluded. The adsorption site adopted by acetylene in the higher coverage phase on Pd{111} is essentially identical. This is the dominant structure in the coverage regime which is catalytically active for the conversion of acetylene to benzene. The implications of these findings for acetylene coupling reactions over Pd{111} are discussed.  相似文献   

19.
Atomic ordering of HCl-isopropanol (HCl-iPA) treated and vacuum annealed (1 0 0) InAs surfaces was studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and reflectance anisotropy spectroscopy (RAS). On the as-treated surface, a diffused (1 × 1) pattern is observed, which successively evolves to the β2(2 × 4)/c(2 × 8) and (4 × 2)/c(8 × 2) ones after annealing to 330 °C and 410 °C, respectively. At the intermediate temperature of 370 °C, an 2(2 × 4)/(4 × 2) mixed reconstruction is observed. Reflectance anisotropy spectra are compared with those of the corresponding reconstructions observed after As-decapping and found to be quite similar. Therefore we conclude that high-quality (1 0 0) InAs surfaces can be obtained by wet chemical treatment in an easy, inexpensive and practical way.  相似文献   

20.
The normal incidence X-ray standing wave (NIXSW) technique, supported by X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS), has been used to determine the local adsorption geometry of SO2 and SO3 on Ni(1 1 1). Chemical-state specific NIXSW data for coadsorbed SO3 and S, formed by the disproportionation of adsorbed SO2 after heating from 140 K to 270 K, were obtained using S 1s photoemission detection. For adsorbed SO2 at 140 K the new results confirm those of an earlier study [Jackson et al., Surf. Sci. 389 (1997) 223] that the molecule is located above hollow sites with its molecular plane parallel to the surface and the S and O atoms in off-atop sites; corrections to account for the non-dipole effects in the interpretation of the NIXSW monitored by S 1s and O 1s photoemission, not included in the earlier work, remove the need for any significant adsorption-induced distortion of the SO2 in this structure. SO3, not previously investigated, is found to occupy an off-bridge site with the C3v axis slightly tilted relative to the surface normal and with one O atom in an off-atop site and the other two O atoms roughly between bridge and hollow sites. The O atoms are approximately 0.87 Å closer to the surface than the S atom. This general bonding orientation for SO3 is similar to that found on Cu(1 1 1) and Cu(1 0 0) both experimentally and theoretically, although the detailed adsorption sites differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号