首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solvation properties of the hydrated excess proton are studied in a hydrophilic pocket of Nafion 117 through a series of molecular dynamics simulations. The multistate empirical valence bond (MS-EVB) methodology, which enables the delocalization of the excess proton through the Grotthuss hopping mechanism, was employed for one of the excess protons in the simulation cell. Simulations were performed such that "classical" nondissociable hydronium cations and a single excess proton treated with the MS-EVB methodology were at a concentration ratio of 39:1. Two degrees of hydration of the Nafion polymer electrolyte membrane were simulated, each displaying the same marked difference between the solvation structures of the classical versus MS-EVB treated (Grotthuss shuttling) excess proton species. These differences are attributed to the solvent dynamics needed to transfer the cation between the solvent separated and contact pair positions about the sulfonic acid counterion. The results demonstrate that it is generally impossible to describe the low pH conditions in the hydrophilic domains of Nafion without the explicit treatment of Grotthuss delocalization in the underlying molecular dynamics model for the excess protons.  相似文献   

2.
The dynamics of water and its effect on proton transport kinetics in Nafion membranes are compared at several hydration levels. Nafion is the most widely used polyelectrolyte membrane in fuel cells. Ultrafast infrared spectroscopy of the O-D stretch of dilute HOD in H2O provides a probe of the local environment and hydrogen bond network dynamics of water confined in the hydrophilic regions of Nafion. The kinetics of proton transfer in Nafion are tracked by following the excited-state proton transfer and recombination kinetics of a molecular probe, pyranine (HPTS). The hydrophilic domains of Nafion grow with increased hydration, and the interfacial regions reorganize, leading to a changing local environment for water near the interface. Swelling is not uniform throughout the membrane, and heterogeneity is observed in the fluorescence anisotropy decays of the methoxy derivative of pyranine. Measurements of the time-dependent anisotropy of water in Nafion provide a direct probe of the hydrogen bond network dynamics. These dynamics, as well as the rate of proton transport over nanoscopic distances, are observed to slow significantly as the hydration level of the membrane decreases. The results provide insights into the influence of changes in the dynamics of water on the proton-transfer processes.  相似文献   

3.
We present an investigation into hydrogen bonding dynamics and kinetics in water using femtosecond infrared spectroscopy of the OH stretching vibration of HOD in D(2)O. Infrared vibrational echo peak shift and polarization-selective pump-probe experiments were performed with mid-IR pulses short enough to capture all relevant dynamical processes. The experiments are self-consistently analyzed with a nonlinear response function expressed in terms of three dynamical parameters for the OH stretching vibration: the frequency correlation function, the lifetime, and the second Legendre polynomial dipole reorientation correlation function. It also accounts for vibrational-relaxation-induced excitation of intermolecular motion that appears as heating. The long time, picosecond behavior is consistent with previous work, but new dynamics are revealed on the sub-200 fs time scale. The frequency correlation function is characterized by a 50 fs decay and 180 fs beat associated with underdamped intermolecular vibrations of hydrogen bonding partners prior to 1.4 ps exponential relaxation. The reorientational correlation function observes a 50 fs librational decay prior to 3 ps diffusive reorientation. Both of these correlation functions compare favorably with the predictions from classical molecular dynamics simulations. The time-dependent behavior can be separated into short and long time scales by the 340 fs correlation time for OH frequency shifts. The fast time scales arise from dynamics that are mainly local: fluctuations in hydrogen bond distances and angles within relatively fixed intermolecular configurations. On time scales longer than the correlation time, dephasing and reorientations reflect collective reorganization of the liquid structure. Since the OH transition frequency and dipole are only weakly sensitive to these collective coordinates, this is a kinetic regime which gives an effective rate for exchange of intermolecular structures.  相似文献   

4.
The time-resolved orientational anisotropies of the OD hydroxyl stretch of dilute HOD in H(2)O confined on a nanometer length scale in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles are studied using ultrafast infrared polarization and spectrally resolved pump-probe spectroscopy, and the results are compared to the same experiments on bulk water. The orientational anisotropy data for three water nanopool sizes (4.0, 2.4, and 1.7 nm) can be fitted well with biexponential decays. The biexponential decays are analyzed using a wobbling-in-a-cone model that involves fast orientational diffusion within a cone followed by slower, full orientational relaxation. The data provide the cone angles, the diffusion constants for motion within the cones, and the final diffusion constants as a function of the nanopool size. The two processes can be interpreted as a local angular fluctuation of the OD and a global hydrogen bond network rearrangement process. The trend in the relative amplitudes of the long and short exponential decays suggest an increasing rigidity as the nanopool size decreases. The trend in the long decay constants indicates a longer hydrogen bond network rearrangement time with decreasing reverse micelle size. The anisotropy measurements for the reverse micelles studied extrapolate to approximately 0.33 rather than the ideal value of 0.4, suggesting the presence of an initial inertial component in the anisotropy decay that is too fast to resolve. The very fast decay component is consistent with initial inertial orientational motion that is seen in published molecular-dynamics simulations of water in AOT reverse micelles. The angle over which the inertial orientational motion occurs is determined. The results are in semiquantitative agreement with the molecular-dynamics simulations.  相似文献   

5.
The properties of confined water and diffusive proton-transfer kinetics in the nanoscopic water channels of Nafion fuel cell membranes at various hydration levels are compared to water in a series of well-characterized AOT reverse micelles with known water nanopool sizes using the photoacid pyranine as a molecular probe. The side chains of Nafion are terminated by sulfonate groups with sodium counterions that are arrayed along the water channels. AOT has sulfonate head groups with sodium counterions that form the interface with the reverse micelle's water nanopool. The extent of excited-state deprotonation is observed by steady-state fluorescence measurements. Proton-transfer kinetics and orientational relaxation are measured by time-dependent fluorescence using time-correlated single photon counting. The time dependence of deprotonation is related to diffusive proton transport away from the photoacid. The fluorescence reflecting the long time scale proton transport has an approximately t-0.8 power law decay in contrast to bulk water, which has a t-3/2 power law. For a given hydration level of Nafion, the excited-state proton transfer and the orientational relaxation are similar to those observed for a related size AOT water nanopool. The effective size of the Nafion water channels at various hydration levels are estimated by the known size of the AOT reverse micelles that display the corresponding proton-transfer kinetics and orientational relaxation.  相似文献   

6.
The solvation and transport properties of the sulfonate-hydronium ion pair have been studied in hydrated Nafion through molecular dynamics simulation. Explicit proton and charge delocalization of the excess proton transport, via the Grotthuss hopping mechanism, were treated using the self-consistent multistate empirical valence bond (SCI-MS-EVB) method. The nature of the sulfonate-hydronium ion pair was characterized through analysis of free-energy profiles. It was found that, in general, the excess proton is solvated between two water molecules of a Zundel moiety while in the contact ion pair position, but then it transitions to an Eigen-like configuration in the solvent-separated pair position. Furthermore, the positive charge associated with the excess proton passes between the contact and solvent-separated ion pair positions through the Grotthuss mechanism rather than simple vehicular diffusion. The total proton diffusion was decomposed into vehicular and Grotthuss components and were found to be of the same relative magnitude, but with a strong negative correlation resulting in a smaller overall diffusion. Correlated motions between the ion pair were examined through the distinct portion of the van Hove correlation function, and a characteristic time scale of approximately 425 ps was observed. Additionally, the association of the hydrated proton with the hydrophobic polymer backbone suggests its amphiphile-like behavior (see Acc. Chem. Res. 2006, 39, 143; Phys. Rev. 1954, 95, 249; J. Chem. Phys. 2005, 123, 084309).  相似文献   

7.
An explanation for the superior proton conductivity of low equivalent weight (EW) short-side-chain (SSC) perfluorosulfonic acid membranes is pursued through the determination of hydrated morphology and hydronium ion diffusion coefficients using classical molecular dynamics (MD) simulations. A unique force field set for the SSC ionomer was derived from torsion profiles determined from ab initio electronic structure calculations of an oligomeric fragment consisting of two side chains. MD simulations were performed on a system consisting of a single macromolecule of the polymer (EW of 580) with the general formula F3C-[CF(OCF2CF2SO3H)-(CF2)7]40-CF3 at hydration levels corresponding to 3, 6, and 13 water molecules per sulfonic acid group. Examination of the hydrated morphology indicates the formation of hydrogen bond "bridges" between distant sulfonate groups without significant bending of the polytetrafluoroethylene backbone. Pair correlation functions of the system identify the presence of ion cages consisting of hydronium ions hydrogen-bonded to three sulfonate groups at the lowest water content. Such structures exhibit very low S-OH3+ separations, well below 4 A and severely inhibit vehicular diffusion of the protons. The number of sulfonate groups in the first solvation shell of a given hydronium ion correlates well with the differences between Nafion and the SSC polymer (Hyflon). The calculated hydronium ion diffusion coefficients of 2.84 x 10-7, 1.36 x 10-6, and 3.47 x 10-6 cm2/s for water contents of 3, 6, and 13, respectively, show only good agreement to experimentally measured values at the lowest water content, underscoring the increasing contribution of proton shuttling or hopping at the higher hydration levels. At the highest water content, the vehicular diffusion accounts for only about 1/5 of the total proton transport similar to that observed in Nafion.  相似文献   

8.
We have performed a detailed and comprehensive analysis of the dynamics of water molecules and hydronium ions in hydrated Nafion using classical molecular dynamics simulations with the DREIDING force field. In addition to calculating diffusion coefficients as a function of hydration level, we have also determined mean residence time of H(2)O molecules and H(3)O(+) ions in the first solvation shell of SO(3)(-) groups. The diffusion coefficient of H(2)O molecules increases with increasing hydration level and is in good agreement with experiment. The mean residence time of H(2)O molecules decreases with increasing membrane hydration from 1 ns at a low hydration level to 75 ps at the highest hydration level studied. These dynamical changes are related to the changes in membrane nanostructure reported in the first part of this work. Our results provide insights into slow proton dynamics observed in neutron scattering experiments and are consistent with the Gebel model of Nafion structure.  相似文献   

9.
We present a detailed mechanism for the proton transfer from a protein‐bound protonated water cluster to the bulk water directed by protein side chains in the membrane protein bacteriorhodopsin. We use a combined approach of time‐resolved Fourier transform infrared spectroscopy, molecular dynamics simulations, and X‐ray structure analysis to elucidate the functional role of a hydrogen bond between Ser193 and Glu204. These two residues seal the internal protonated water cluster from the bulk water and the protein surface. During the photocycle of bacteriorhodopsin, a transient protonation of Glu204 leads to a breaking of this hydrogen bond. This breaking opens the gate to the extracellular bulk water, leading to a subsequent proton release from the protonated water cluster. We show in detail how the protein achieves vectorial proton transfer via protonated water clusters in contrast to random proton transfer in liquid water.  相似文献   

10.
Classical molecular dynamics (MD) simulations were performed to determine the hydrated morphology and hydronium ion diffusion coefficients in two different perfluorosulfonic acid (PFSA) membranes as functions of water content. The structural and transport properties of 1143 equivalent weight (EW) Nafion, with its relatively long perfluoroether side chains, are compared to the short-side-chain (SSC) PFSA ionomer at an EW of 977. The separation of the side chains was kept uniform in both ionomers consisting of -(CF 2) 15- units in the backbone, and the degree of hydration was varied from 5 to 20 weight % water. The MD simulations indicated that the distribution of water clusters is more dispersed in the SSC ionomer, which leads to a more connected water-channel network at the low water contents. This suggests that the SSC ionomer may be more inclined to form sample-spanning aqueous domains through which transport of water and protons may occur. The diffusion coefficients for both hydronium ions and water molecules were calculated at hydration levels of 4.4, 6.4, 9.6, and 12.8 H 2O/SO 3H for each ionomer. When compared to experimental proton diffusion coefficients, this suggests that as the water content is increased the contribution of proton hopping to the overall proton diffusion increases.  相似文献   

11.
The complex environments experienced by water molecules in the hydrophilic channels of Nafion membranes are studied by ultrafast infrared pump-probe spectroscopy. A wavelength dependent study of the vibrational lifetime of the O-D stretch of dilute HOD in H(2)O confined in Nafion membranes provides evidence of two distinct ensembles of water molecules. While only two ensembles are present at each level of membrane hydration studied, the characteristics of the two ensembles change as the water content of the membrane changes. Time dependent anisotropy measurements show that the orientational motions of water molecules in Nafion membranes are significantly slower than in bulk water and that lower hydration levels result in slower orientational relaxation. Initial wavelength dependent results for the anisotropy show no clear variation in the time scale for orientational motion across a broad range of frequencies. The anisotropy decay is analyzed using a model based on restricted orientational diffusion within a hydrogen bond configuration followed by total reorientation through jump diffusion.  相似文献   

12.
The orientational relaxation dynamics of water confined between mica surfaces is investigated using molecular dynamics simulations. The study illustrates the wide heterogeneity that exists in the dynamics of water adjacent to a strongly hydrophilic surface such as mica. Analysis of the survival probabilities in different layers is carried out by normalizing the corresponding relaxation times with bulk water layers of similar thickness. A 10-fold increase in the survival times is observed for water directly in contact with the mica surface and a non-monotonic variation in the survival times is observed moving away from the mica surface to the bulk-like interior. The orientational relaxation time is highest for water in the contact layer, decreasing monotonically away from the surface. In all cases the ratio of the relaxation times of the 1st and 2nd rank Legendre polynomials of the HH bond vector is found to lie between 1.5 and 1.9 indicating that the reorientational relaxation in the different water layers is governed by jump dynamics. The orientational dynamics of water in the contact layer is particularly novel and is found to undergo distinct two-dimensional hydrogen bond jump reorientational dynamics with an average waiting time of 4.97 ps. The waiting time distribution is found to possess a long tail extending beyond 15 ps. Unlike previously observed jump dynamics in bulk water and other surfaces, jump events in the mica contact layer occur between hydrogen bonds formed by the water molecule and acceptor oxygens on the mica surface. Despite slowing down of the water orientational relaxation near the surface, life-times of water in the hydration shell of the K(+) ion are comparable to that observed in bulk salt solutions.  相似文献   

13.
We have carried out ab initio molecular dynamics simulations of a liquid-vapor interfacial system consisting of a mixture of water and ammonia molecules. We have made a detailed analysis of the structural and dynamical properties of the bulk and interfacial regions of the mixture. Among structural properties, we have looked at the inhomogeneous density profiles of water and ammonia molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions of bulk and interfacial molecules. It is found that the interfacial molecules show preference for specific orientations so as to form water-ammonia hydrogen bonds at the interface with ammonia as the acceptor. The structure of the system is also investigated in terms of inter-atomic voids present in the system. Among the dynamical properties, we have calculated the diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion in bulk and interfacial regions. It is found that the diffusion and orientation relaxation of the interfacial molecules are faster than those of the bulk. However, the hydrogen bond lifetimes are longer at the interface which can be correlated with the time scales found from the decay of frequency time correlations.  相似文献   

14.
We have investigated the density and temperature dependences of microscopic structure and hydrogen bond dynamics of water inside carbon nanotubes (CNTs) using molecular dynamics simulation. The CNTs are treated as rigid, and smoothly truncated extended simple point charge water model is adopted. The results show that as the overall density increases, the atomic density profiles of water inside CNTs become sharper, the peaks shift closer to the wall, and a new peak of hydrogen atomic density appears between the first (outermost) and second layer. The intermittent hydrogen bond correlation function C(HB)(t) of water inside CNTs decays slower than that of bulk water, and the rate of decay decreases as the tube diameter decreases. C(HB)(t) clearly decays more slowly for the first layer of water than for other regions inside CNTs. The C(HB)(t) of the interlayer hydrogen bonds decays faster than those of the other regions and even faster than that of the bulk water. On the other hand, the hydrogen bond lifetimes of the first layer are shorter than those of the inner layer(s). Interlayer hydrogen bond lifetimes are clearly shorter than those of the constituent layers. As a whole, the hydrogen bond lifetimes of water inside CNTs are shorter than those of bulk water, while the relaxation of C(HB)(t) is slower for the confined water than for bulk water. In other words, hydrogen bonds of water inside CNTs break more easily than those of bulk water, but the water molecules remain in each other's vicinity and can easily reform the bonds.  相似文献   

15.
Classical molecular dynamics (MD) simulations are employed as a tool to investigate structural properties of ice crystals under several temperature and pressure conditions. All ice crystal phases are analyzed by means of a computational protocol based on a clustering approach following standard MD simulations. The MD simulations are performed by using a recently published classical interaction potential for oxygen and hydrogen in bulk water, derived from neutron scattering data, able to successfully describe complex phenomena such as proton hopping and bond formation/breaking. The present study demonstrates the ability of the interaction potential model to well describe most ice structures found in the phase diagram of water and to estimate the relative stability of 16 known phases through a cluster analysis of simulated powder diagrams of polymorphs obtained from MD simulations. The proposed computational protocol is suited for automated crystal structure identification.  相似文献   

16.
Rearrangements of the hydrogen bond network of liquid water are believed to involve rapid and concerted hydrogen bond switching events, during which a hydrogen bond donor molecule undergoes large angle molecular reorientation as it exchanges hydrogen bonding partners. To test this picture of hydrogen bond dynamics, we have performed ultrafast 2D IR spectral anisotropy measurements on the OH stretching vibration of HOD in D(2)O to directly track the reorientation of water molecules as they change hydrogen bonding environments. Interpretation of the experimental data is assisted by modeling drawn from molecular dynamics simulations, and we quantify the degree of molecular rotation on changing local hydrogen bonding environment using restricted rotation models. From the inertial 2D anisotropy decay, we find that water molecules initiating from a strained configuration and relaxing to a stable configuration are characterized by a distribution of angles, with an average reorientation half-angle of 10°, implying an average reorientation for a full switch of ≥20°. These results provide evidence that water hydrogen bond network connectivity switches through concerted motions involving large angle molecular reorientation.  相似文献   

17.
It has been found that the main mechanism of 1H protons spin–lattice relaxation of bulk 5CB at 200 MHz is its intramolecular motion, namely, the reorientation of CH2 and CH3 groups of its alkyl chain. Activation parameters of such motions have been estimated.

Drastic decrease in proton spin–lattice relaxation times at the nematic-to-isotropic phase transition can be explained by the activation of molecular translational diffusion and reorientations around long and short molecular axes of bulk 5CB.

Our NMR analysis revealed the slowing-down of molecular dynamics of confined 5CB molecules and their fragments. This can be explained by the interaction of some part of 5CB molecules with the surface active Si(Al)–OH centers of MCM matrix via hydrogen bonds of Si(Al)–OHN≡C-type.  相似文献   


18.
We present a detailed analysis of the nanostructure of the short side chain (SSC) perfluorosulfonic acid membrane and its effect on H(2)O clustering, H(3)O(+) and H(2)O diffusion, and mean residence times of H(2)O near SO(3)(-) groups based on molecular dynamics simulations. We studied a range of hydration levels (λ) at temperatures of 300 and 360 K, and compare the results to our findings in the benchmark Nafion? membrane. The water cluster diameter is nearly the same in the two membranes, while the extent of SO(3)(-) clustering is more in the SSC membrane. The calculated cluster diameter of about 2.4 nm is in excellent agreement with the recently proposed cylindrical water channel model of these membranes. The diffusion coefficients of H(2)O and H(3)O(+) are similar in SSC and Nafion membranes. Raising the temperature of the SSC membrane from 300 to 360 K provides a much bigger increase in proton vehicular diffusion coefficient (by a factor of about 4) than changing the side chain length. H(3)O(+) ions are found to exchange more frequently with SO(3)(-) partners at the higher temperature. Our key findings are that (a) the hydrophobic-hydrophilic separation in the two membranes is surprisingly similar; (b) at all hydration levels studied, the long side chain of Nafion is bent and is effectively equivalent to a short side chain in terms of extension into the water domain; (c) vehicular proton transport occurs mainly between SO(3)(-) groups; and (d) changing the size of the simulation cell does not change the results significantly. The simulations are validated in good agreement with the corresponding experimental values for the simulated membrane density and diffusion coefficients of H(2)O.  相似文献   

19.
We used classical molecular dynamics simulation with the DREIDING force field to characterize the changes in the nanostructure of Nafion membrane brought about by systematically changing the hydration level. We calculated the relative percentages of free, weakly bound, and bound water in hydrated Nafion membranes. At low hydration levels, coordination of hydronium ions by multiple sulfonate groups prevents vehicular transport and impedes structural transport of protons through steric hindrance to hydration of the hydronium ions. Our results provide insights into the nanostructure of hydrated Nafion membrane and are in excellent agreement with experimental observations by neutron scattering of changes in the percentage of non diffusing hydrogen atoms.  相似文献   

20.
We present a first-principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in heavy water without using any empirical model potentials. The calculations are based on ab initio molecular dynamics simulations for trajectory generation and a time series analysis using the wavelet method for frequency calculations. It is found that, in deuterated water, although a one-to-one relation does not exist between the instantaneous frequency of an OD bond and the distance of its associated hydrogen bond, such a relation does hold on average. The dynamics of spectral diffusion is investigated by means of frequency-time correlation and spectral hole dynamics calculations. Both of these functions are found to have a short-time decay with a time scale of approximately 100 fs corresponding to dynamics of intact hydrogen bonds and a slower long-time decay with a time constant of approximately 2 ps corresponding to lifetimes of hydrogen bonds. The connection of the slower time scale to the dynamics of local structural relaxation is also discussed. The dynamics of hydrogen bond making is shown to have a rather fast time scale of approximately 100 fs; hence, it can also contribute to the short-time dynamics of spectral diffusion. A damped oscillation is also found at around 150-200 fs, which is shown to have come from underdamped intermolecular vibrations of a hydrogen-bonded water pair. Such assignments are confirmed by independent calculations of power spectra of intermolecular motion and hydrogen bond kinetics using the population correlation function formalism. The details of the time constants of frequency correlations and spectral shifts are found to depend on the frequencies of chosen OD bonds and are analyzed in terms of the dynamics of hydrogen bonds of varying strengths and also of free non-hydrogen-bonded OD groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号