首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
A reactive extrusion technology was adopted to synthesize a flame retardant (ER), based on the esterification of melamine phosphate and pentaerythritol. The ER imparts good flame retardancy and non-dripping for polyethylene (PE) when combined with ammonium polyphosphate to yield an intumescent polyethylene (PE-IFR). The performance of this intumescent system has been enhanced by the addition of small amounts (0.2%) chelated copper(II)salicylaldehyde (CuSA) and salicylaldoxime, (CuSAO). The thermal stabilization and burning behaviour of the flame retardant PE system have been investigated by TGA, LOI, the UL-94 test and cone calorimetry. All formulations studied provide good flame retardant behaviour, with LOI ≥ 27.4 and UL-94 V-0 rating. The onset of decomposition in TGA for flame retarded PE (PE-IFR, PE-IFR-CuSA and PE-IFR-CuSAO) commences at lower temperature than that of PE with release of blowing agent, but continues to a higher temperature, leaving a greater residue. Significant differences have been observed in burning behaviour using cone calorimetry, between flame retarded PE (PE-IFR, PE-IFR-CuSA and PE-IFR-CuSAO) and PE, showing decreases in HRR, PHRR, MLR, FIGRA and CO emission.  相似文献   

2.
高密度聚乙烯/蒙脱土纳米复合材料膨胀阻燃体系的性能   总被引:1,自引:0,他引:1  
使用以乙烯/醋酸乙烯共聚物(EVA)为相容剂的高密度聚乙烯/蒙脱土(HDPE/OMT)纳米复合材料作为基体,制备了含不同成炭剂的聚磷酸铵(APP)膨胀阻燃体系,对其阻燃性能进行了比较和研究,并分析了蒙脱土与膨胀阻燃剂协效作用的机理。热重分析(TGA)、垂直燃烧(UL-94)、极限氧指数(LOI)、锥形量热计结果表明:APP/季戊四醇(PER)体系熔融过程较短可形成蒙脱土增强炭层;PER/PA/OMT体系中较高的有机物含量有利于蒙脱土迁移和堆积。  相似文献   

3.
A novel hyperbranched polyamine charring agent (HPCA), a derivative of triazines, was synthesized and well characterized by 1H NMR and FTIR. HPCA and ammonium polyphosphate (APP) were added into polylactide (PLA) resin as an intumescent flame retardant (IFR) system to impart flame retardancy and dripping resistance to PLA. The flammability and thermal stability of IFR-PLA composites were investigated by limiting oxygen index (LOI), UL-94 vertical burning, cone calorimetry and thermogravometric analysis (TGA) tests. The results showed that the IFR system had both excellent flame retardant and anti-dripping abilities for PLA. The TGA curves suggested that HPCA has good ability of char formation and when combined with APP, would induce synergistic effect which could be clearly observed. This effect greatly promoted the char formation of IFR-PLA composites, hence improved the flame retardant property. Additionally, the structure and morphology of char residues were studied by XPS, FTIR and SEM.  相似文献   

4.
A novel functionalized α-zirconium phosphate (F-ZrP) modified with intumescent flame retardant was synthesized by co-precipitation method and characterized. Poly (lactic acid) (PLA)/F-ZrP nanocomposites were prepared by melt blending method. The thermal stability and combustion behavior of PLA/F-ZrP nanocomposites were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). The results showed that the addition of flame retardant F-ZrP slightly affect PLA's thermal stability, but significantly improve the flame retardancy of PLA composites. In comparison with neat PLA, the LOI value of PLA/F-ZrP was increased from 19.0 to 26.5, and the UL-94 rating was enhanced to V-0 as the loading of F-ZrP at 10%. SEM results suggested the introduction of F-ZrP in the PLA system can form compact intumescent char layer during burning. All these results showed that the F-ZrP performed good flame retardancy for PLA.  相似文献   

5.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy and char formation of a novel halogen‐free intumescent flame retardant polypropylene composites (PP/IFR) were investigated by the means of limiting oxygen index (LOI), vertical burning test (UL‐94), digital photos, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), cone calorimeter test (CCT), laser Raman spectroscopy (LRS) and X‐ray photoelectron spectroscopy (XPS). It was found that a small amount of 4A could dramatically enhance the LOI value of the PP/IFR systems and the materials could pass the UL‐94 V‐0 rating test. Also, it could enhance the fire retardant performance with a great reduction in combustion parameters of PP/IFR system from CCT test. The morphological structures observed by digital and SEM photos revealed that 4A could promote PP/IFR to form more continuous and compact intumescent char layer. The LRS measurement, XPS and TGA analysis demonstrated that the compactness and strength of the outer char surface of the PP/IFR/4A system was enhanced, and more graphite structure was formed to remain more char residue and increase the crosslinking degree. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The two kinds of transition metal ion-incorporated nickel phosphates (TMIVSB-1) were synthesized by the hydrothermal method. The flame retardancy and thermal behavior of intumescent flame retardants (IFR), with and without TMIVSB-1 for PP, were investigated by LOI, UL-94 test, thermogravimetric analyses (TGA) and cone calorimetry. TMIVSB-1 can obviously improve the flame retardant behavior of IFR systems according to the results of LOI values and UL-94 test. The results of LOI show that 2 wt% TMIVSB-1 can increase the LOI value by 3–5 unit compared with that of PP/IFR composite. The UL-94 test shows that PP with 20% IFR burns and has no rating, but the addition of a small content 2 wt% of TMIVSB-1 with 18 wt% of IFR can reach a UL-94 V-0 rating. TGA results show that the thermal stability of PP/IFR/TMIVSB-1 increases obviously more than that of PP/IFR when the temperature is above 265°C. From cone calorimetry results, it can be observed that the HRR peaks are not obviously decreased, but the burning time of PP/IFR/FeVSB-1 (351s) and PP/IFR/ZnVSB-1 (380s) is obviously prolonged compared with that of PP/IFR (303s). The real time FTIR spectra (RTFTIR) demonstrates that the addition of TMIVSB-1 further staves the decomposition of the PP composites. The scanning electron microscopy (SEM) indicates the quality of char forming of PP/IFR/ TMIVSB-1 is superior to that of PP/IFR.  相似文献   

7.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

8.
In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane(PDMS)/phenol BA epoxy system were investigated. Intumescent coating formulations were developed by incorporating different weight percentages of HNTs and PDMS in basic intumescent ingredients (ammonium polyphosphate/melamine/boric acid/expandable graphite, APP/MEL/BA/EG). The performance of intumescent formulations was investigated by furnace fire test, Bunsen burner fire test, field emission electron microscopy (FESEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared analysis (FTIR). The Bunsen burner fire test results indicated that the fire performance of HNTs and PDMS reinforced intumescent formulation has improved due to the development of silicate network over the char residue. Improved expansion in char residue was also noticed in the formulation, SH(3), due to the minimum decomposition of char carbon. FESEM and TEM results validated the development of silicate network over char layer of coating formulations. A considerable mass loss difference was noticed during thermal gravimetric analysis (TGA) of intumescent coating formulations. Reference formulation, SH(0) with no filler, degraded at 300 °C and lost 50% of its total mass but SH(3), due to synergistic effects between PDMS and HNTs, degraded above 400 °C and showed the maximum thermal stability. XRD analysis showed the development of thermally stable compound mulltie, due to the synergism of HNTs and siloxane during intumescent reactions, which enhanced fire performance. FTIR analysis showed the presence of incorporated siloxane and silicates bonds in char residue, which endorsed the toughness of intumescent char layer produced. Moreover, the synergistic effect of HNTs, PDMS, and other basic intumescent ingredients enhanced the polymer cross-linking in binder system and improved fire resistive performance of coatings.  相似文献   

9.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

10.
A novel flame retardant containing phosphorous-nitrogen structure, the ammonium salt of 2-hydroxyl-5,5-dimethyl-2,2-oxo-1,3,2-dioxapho sphorinane (PNOH), was synthesized and its structure was characterized by 1H NMR and FTIR spectra. PNOH was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for polyvinyl alcohol (PVA). When a few amounts (0.5%) of metal chelates were added, the flame retardancy of the IFR-PVA systems was significantly improved, having a high LOI value of 34.2 in a total IFR loading of 15 wt.%. In order to have an understanding of the resulting flame retardant effects, the thermal degradation behaviors of IFR-PVA systems were investigated by thermogravimetric analysis (TGA), and the morphology and structures of residues generated in different conditions were investigated by scanning electronic microscopy (SEM) and FTIR spectra. The results show that NiSAO can promote the thermal stability of the IFR-PVA; the residual char containing polyphosphoric or phosphoric acid is formed during the combustion; the formation of a continuous and dense char layer could inhibit the transmission of heat during contacting with flame and shows good flame retardancy.  相似文献   

11.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

12.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

13.
Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings.  相似文献   

14.
Novel intumescent flame retardant polypropylene (PP) composites were prepared based on a char forming agent (CFA) and silica-gel microencapsulated ammonium polyphosphate (Si-MCAPP). The thermal and flame retardancy of flame retardant PP composites were investigated by limiting oxygen index, UL-94 test, cone calorimetry, thermogravimetric analysis, scanning electron micrograph, and water resistance test. The results of cone calorimetry show that the flame retardant properties of PP with 30 wt% novel intumescent flame retardants (CFA/Si-MCAPP = 1:3) improve greatly. The peak heat release rate and total heat release decrease, respectively, from 1,140.0 to 156.8 kW m?2 and from 96.0 to 29.5 MJ m?2. The PP composite with CFA/Si-MCAPP = 1:3 has the excellent water resistance, and it can still obtain a UL-94 V-0 rating after 168 h soaking in water.  相似文献   

15.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

16.
A phosphorus-containing flame retardant, 4-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yloxymethyl)-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-1-oxide (MOPO), was synthesized successfully and characterized. The flame retardancy and thermal behavior of a new intumescent flame-retardant (IFR) system for EVA, which was made of MOPO and ammonium polyphosphate (APP), were investigated by limiting oxygen index (LOI) test, vertical burning test (UL-94), cone calorimeter, and thermogravimetric analysis (TGA). An LOI value of 28.4 and UL-94 V-0 rating can be achieved when the total loading of MOPO and APP was 30 wt.%. The results from cone calorimeter indicate that both the heat release rate (HRR) and the total heat release (THR) of IFR-EVA decreased significantly compared with those of neat EVA. TG curves showed that the amount of residues increased significantly when intumescent additives were added; it also could be found that the LOI values increased with the increase in char residues. Meanwhile, morphology of the residues obtained from burning IFR-EVA in LOI test was studied through the SEM observations and rich compact char layers could explain the excellent flame retardance.  相似文献   

17.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

18.
The effects of lanthanum oxide (La2O3) as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP) were studied, and the new IFR system mainly consisted of the charring-foaming agent (CFA) and ammonium polyphosphate (APP). The limiting oxygen index (LOI), UL-94 test, thermogravimetric analysis (TGA), cone calorimeter (CONE) and scanning electron microscopy (SEM) were used to evaluate the synergistic effects of La2O3. It was found that when IFR was fixed at 20 wt% in IFR-PP composites, only a little amount of La2O3 could enhance LOI value and pass the UL-94 V0 rating test (1.6 mm). The TGA data showed that La2O3 could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that La2O3 and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR), total heat release (THR), smoke production rate (SPR), total smoke production (TSP), ignition time (IT) and so on. The morphological structures observed by SEM demonstrated that La2O3 could promote to form the homogenous and compact intumescent char layer. Thus, a suitable amount of La2O3 plays a synergistic effect in the flame retardancy and smoke suppression of IFR composites.  相似文献   

19.
以三氯氧磷和双酚A为原料制备了具有超支化结构的聚磷酸酯阻燃剂(HPPEA),通过红外(FTIR),核磁(1H-NMR,31P-NMR)及热重分析表征了产物的结构和热稳定性.将HPPEA与三聚氰胺聚磷酸盐(MPP)进行复配,通过熔融共混法制备阻燃尼龙6,通过氧指数法和垂直燃烧法测试了其阻燃性能,采用热重分析(TGA)研究...  相似文献   

20.
In this article, co-microencapsulation technology was utilized for decorating the surface of dialdehyde starch (DAS) and melamine polyphosphate (MPP) via one-step process. The aim for this design was to improve the dispersion for DAS and MPP in polypropylene (PP) and employ DAS as sustainable char-forming agent, which lied in enhancing the flame retardancy of PP. In view of chemical composition, morphology and surface wettability, the changes for DAS and MPP after modification were confirmed by energy dispersive spectrometer (EDS), scanning electron microscope (SEM) and water contact angle (WCA) tests, respectively. Most of all, the results for flame retardant tests demonstrated limiting oxygen index (LOI) value and vertical burning tests (UL-94) rating of PP/30 ph M[M&D] were 28.2% and V-1. Along with the synergistic effect, the homogeneous dispersion of DAS and MPP in PP after co-microencapsulation modification was also one of main reasons for the increased flame retardant properties. Except that, the chemical interaction between DAS and MPP in producing the char layer was also certified by TGA curves. After systematic analysis on char residue, the possible intumescent flame retardant mechanism was primarily proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号