首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Performance conversion of a centrifugal pump as turbine from the known performance curves in pump mode is vital important in pump selection, power generation and investment assessment, especially under low Reynolds number operation conditions. Effects of Reynolds number on such a performance conversion have not been taken into account so far. In the paper, flow rate, head and output power and hydraulic efficiency conversion factors at zero efficiency/power, 0.8 part-load, best efficiency, 1.2 over-load and maximum flow rate points are defined and extracted from the performance curves of a centrifugal pump as turbine at five viscosities obtained by using CFD simulations. The conversion factors are correlated to impeller Reynolds number and a performance conversion model is proposed by employing 3rd and 4th order polynomials for the output power and head curves. New correlations of flow rate, head and efficiency conversion factors are also attempted in terms of specific speed and efficiency as well as impeller Reynolds number based on the data found in literature. The conversion model is a framework and can be useful for design of pump as turbine and its performance prediction, especially under variable liquid viscosity conditions.  相似文献   

2.
U. Schoisswohl  H. C. Kuhlmann 《PAMM》2007,7(1):4100031-4100032
A cylindrical volume of fluid, with a free surface on top, is heated by a parabolic heat flux from above. Two physical effects drive a flow: thermocapillary effects due to free-surface temperature gradients introduced by the non-uniform heat flux and buoyancy forces due to gravity. The basic axisymmetric flow is computed by finite volumes and its stability is investigated by a linear-stability analysis. It is found that the critical stability boundaries and modes are similar to those known from the half-zone model of crystal growth. For low Prandtl numbers the critical mode is steady and three-dimensional. We find an asymptotic critical value in the limit of vanishing Prandtl number. For increasing Prandtl number the critical Reynolds number increases. Near unit Prandtl number no threshold could be found with the present computational limitations. For Prandtl numbers larger than unity, the critical mode is oscillatory and the critical Reynolds number decreases with the Prandtl number. We present evidence that the low- and high-Prandtl-number instabilities are essentially centrifugal respectively due to the hydrothermal-wave mechanism. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Convective motion in a layer of fluid heated from below is considered where the boundaries are stress free and the upper surface supports interfacial gravity waves. Inviscid, immiscible, constant density, ambient fluid is separated from the convecting layer below by a stable density jump. An important parameter in the problem is δ representing the ratio of the interfacial density jump to the density change across the convecting layer. Amplitude equations are derived describing convective motion in the plane and a planform selection analysis performed. It is demonstrated that the breaking of the translational and Galilean invariance of the problem allows a strong coupling between a large-scale interfacial mode and convection. The resulting phase dynamics is third order in time.  相似文献   

4.
The stability of a number of one-dimensional plane-parallel steady flows of a viscous incompressible fluid is investigated analytically using the method of integral relations. The mathematical formulation is reduced to eigenvalue problems for the Orr–Sommerfeld equation. One of three versions is chosen as the boundary conditions: all the components of the velocity perturbation are equal to zero on both boundaries of the layer (in this case we have the classical Orr–Sommerfeld problem), all the components of the velocity perturbation on one of the boundaries are equal to zero and the perturbations of the shear component of the stress vector and of the normal component of the velocity are equal to zero on the other, and all the components of the velocity perturbation are equal to zero on one boundary and the other boundary should be free. The boundary conditions derived in the latter case, are characterized by the occurrence of a spectral parameter in them. For kinematic conditions the lower estimates of the critical Reynolds number – the Joseph–Yih estimates, are improved. In the remaining cases the technique of the integral-relations method is developed, leading to new estimates of the stability. Analogs of Squire's theorem are derived for the boundary conditions of all the types mentioned above. Upper estimates of the increment of the increase in perturbations in eigenvalue problems for the Rayleigh equation with two types of boundary conditions are given.  相似文献   

5.
In the present paper, we suggest a numerical method for the analysis of the motion of a viscous incompressible fluid under the transition to the turbulent mode for an example of the numerical solution of a three-dimensional space problem on the fluid flow behind a ledge for various values of the Reynolds number. We show that, at the initial stages, the turbulence in the problem is developed via successive bifurcations of generation of a stable cycle, two-dimensional tori, and then three-dimensional tori in the infinite-dimensional phase space of the system.  相似文献   

6.
The present study is concerned with the free vibration analysis of a horizontal rectangular plate, either immersed in fluid or floating on its free surface. The governing equations for a moderately thick rectangular plate are analytically derived based on the Mindlin plate theory (MPT), whereas the velocity potential function and Bernoulli’s equation are employed to obtain the fluid pressure applied on the free surface of the plate. The simplifying hypothesis that the wet and dry mode shapes are the same, is not assumed in this paper. In this work, an exact-closed form characteristics equation is used for the plate subjected to a combination of six different boundary conditions. Two opposite sides are simply supported and any of the other two edges can be free, simply supported or clamped. To demonstrate the accuracy of the present analytical solution, a comparison is made with the published experimental and numerical results in the literature, showing an excellent agreement. Then, natural frequencies of the plate are presented in tabular and graphical forms for different fluid levels, fluid densities, aspect ratios, thickness to length ratios and boundary conditions. Finally, some 3-D mode shapes of the rectangular Mindlin plates in contact with fluid are illustrated.  相似文献   

7.
本文考虑了竖直毛细管中具有两个自由面的有限长液柱的粘性流体运动.假设流体是牛顿的对边界条件进行线性化后,得到了小雷诺数情形下速度、压力和自由面形状的级数形式的分析表达式,对水和血液在多种液柱长度下求出了数值结果.分析表明在上下弯月面处有强回流.最大回流速度可达主流平均速度57%左右此外,本文还研究了惯性效应.采用时间相关的有限差分法求出了Re=24.5时非线性方程的数值解.将此数值解和小雷诺数时的分析解进行比较表明,当Re≤24.5时惯性效应不大.  相似文献   

8.
The present paper introduces a new interfacial marker-level set method (IMLS) which is coupled with the Reynolds averaged Navier–Stokes (RANS) equations to predict the turbulence-induced interfacial instability of two-phase flow with moving interface. The governing RANS equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two phases. The topological changes of the interface are predicted by applying the level set approach. By fitting a number of interfacial markers on the intersection points of the computational grids with the interface, the interfacial stresses and consequently, the interfacial driving forces are easily estimated. Moreover, the normal interface velocity, calculated at the interfacial markers positions, can be extended to the higher dimensional level set function and used for the interface advection process. The performance of linear and non-linear two-equation kε turbulence models is investigated in the context of the considered two-phase flow impinging problem, where a turbulent gas jet impinging on a free liquid surface. The numerical results obtained are evaluated through the comparison with the available experimental and analytical data. The nonlinear turbulence model showed superiority in predicting the interface deformation resulting from turbulent normal stresses. However, both linear and nonlinear turbulence models showed a similar behavior in predicting the interface deformation due to turbulent tangential stresses. In general, the developed IMLS numerical method showed a remarkable capability in predicting the dynamics of the considered two-phase immiscible flow problems and therefore it can be applied to quite a number of interface stability problems.  相似文献   

9.
The stability of certain steady flows in a rotating system with rigid bottom and free top surfaces is investigated. The simplest flow states having the essential spatial variations of steady responses of a rotating fluid system to differential heating in the horizontal are studied, that is, those with a constant gradient temperature distribution with both horizontal and vertical components, and the accompanying Coriolis-balanced constant velocity shear (thermal wind). Ekman boundary layers and intermediate boundary layers are encountered in a systematic asymptotic analysis in two small parameters, the Ekman number and an inverse Richardson number. The resulting neutral stability curves indicate the possibility of instabilities above the inviscid stability criterion due to Eady, for some mean flow configurations. The estimate of the critical Taylor number is numerically close to the values obtained in the most nearly applicable experiments.  相似文献   

10.
The interfacial stability with mass transfer, surface tension, and porous media between two rigid planes will be investigated in the view of viscous potential flow analysis. A general dispersion relation is obtained. For Kelvin-Helmholtz instability, it is found that the stability criterion is given by a critical value of the relative velocity. On the other hand, in the absence of gravity the problem reduces to Brinkman model of the stability of two fluid layers between two rigid planes. Vanishing of the critical value of the relative velocity gives rise to a new dispersion relation for Rayleigh-Taylor instability. Formulas for the growth rates and neutral stability curve are also given and applied to air-water flows. The effects of viscosity, porous media, surface tension, and heat transfer are also discussed in relation to whether the system is potentially stable or unstable. The Darcian term, permeability’s and porosity effects are also concluded for Kelvin-Helmholtz and Rayleigh-Taylor instabilities. The relation between porosity and dimensionless relative velocity is also investigated.  相似文献   

11.
In this study, we propose a fully discrete energy stable scheme for the phase-field moving contact line model with variable densities and viscosities. The mathematical model comprises a Cahn–Hilliard equation, Navier–Stokes equation, and the generalized Navier boundary condition for the moving contact line. A scalar auxiliary variable is employed to transform the governing system into an equivalent form, thereby allowing the double well potential to be treated semi-explicitly. A stabilization term is added to balance the explicit nonlinear term originating from the surface energy at the fluid–solid interface. A pressure stabilization method is used to decouple the velocity and pressure computations. Some subtle implicit–explicit treatments are employed to deal with convention and stress terms. We establish a rigorous proof of the energy stability for the proposed time-marching scheme. A finite difference method based on staggered grids is then used to spatially discretize the constructed time-marching scheme. We also prove that the fully discrete scheme satisfies the discrete energy dissipation law. Our numerical results demonstrate the accuracy and energy stability of the proposed scheme. Using our numerical scheme, we analyze the contact line dynamics based on a shear flow-driven droplet sliding case. Three-dimensional droplet spreading is also investigated based on a chemically patterned surface. Our numerical simulation accurately predicts the expected energy evolution and it successfully reproduces the expected phenomena where an oil droplet contracts inward on a hydrophobic zone and then spreads outward rapidly on a hydrophilic zone.  相似文献   

12.
Hydrodynamic stability of plane Couette flow of an upper convectedMaxwell fluid is investigated in presence of a transverse magneticfield assuming that the magnetic Prandtl number is sufficientlysmall. The resulting equation is a modified Orr–Sommerfeldequation. The equations of stability are solved numericallyusing Chebyshev collocation method with QZ algorithm. The criticalvalues of Reynolds number, wave number and wave speed are computedand the results are shown through the neutral curves. By increasingthe amount of elasticity to a certain value, it is shown that,as the Hartmann number increases, the minimum critical Reynoldsnumber decreases and it does not increase again in contrastto the Newtonian case.  相似文献   

13.
The evolution of a single long wave of finite amplitude at the interface of two immiscible fluids of different viscosities and densities, between two horizontal plates is solved, using a boundary layer flow approximation for the equation of motion in each fluid layer. It is found that when the nonlinear inertial effects are taken into account in a moderate manner, at least in the frame of the boundary layer approximation, the initial unperturbed flow with smooth interface is stable to a single wave perturbation at the interface, even in the presence of adverse density and viscosity stratifications. However, when the nonlinear effects are increased in a specific way, and the magnitudes of the parameters involved are kept within the order of magnitude established for the present theory, an unstable flow configuration can be obtained.  相似文献   

14.
We consider two incompressible viscous fluid flows interacting through thin non-Newtonian boundary layers of higher Reynolds? number. We study the asymptotic behaviour of the problem, with respect to the vanishing thickness of the layers, using Γ-convergence methods. We derive general interfacial boundary conditions between the two fluid flows. These boundary conditions are specified for some particular cases including periodic or fractal structures of layers.  相似文献   

15.
以小振幅波理论为基础,利用奇异摄动方法研究了有背景流存在下两层密度成层状态下的毛细重力波,求得了两层密度成层状态下各层流体速度势的三阶解及毛细重力波波面位移的三阶Stokes波解,并讨论了毛细重力波的kelvin-Helmholtz的不稳定性.结果表明在有流存在的情况下,两层密度成层流体毛细重力波的一阶渐近解、频散关系,二阶渐近解及三阶渐近解不仅依赖于各层流体的厚度和密度,也依赖于表面张力和各层流体的背景流流场;毛细重力波的三阶解描述了背景流场与毛细重力波之问的三阶非线性相互作用.对于给定的波数k(实数)毛细重力波可能出现kelvin-Helmholtz不稳定性.  相似文献   

16.
The vortex formation and shedding behind bluff structures is influenced by fluid flow parameters such as, Reynolds number, surface roughness, turbulence level, etc. and structural parameters such as, mass ratio, frequency ratio, damping ratio, etc. When a structure is flexibly mounted, the Kármán vortex street formed behind the structure gives rise to vortex induced oscillations. The control of these flow induced vibrations is of paramount practical importance for a wide range of designs. An analysis of flow patterns behind these structures would enable better understanding of wake properties and their control. In the present study, flow past a smooth circular cylinder is numerically simulated by coupling the mass, momentum conservation equations along with a dynamical evolution equation for the structure. An active flow control strategy based on zero net mass injection is designed and implemented to assess its efficacy. A three actuator system in the form of suction and blowing slots are positioned on the cylinder surface. A single blowing slot is located on the leeward side of the cylinder, while two suction slots are positioned at an angle α = 100°. This system is found to effectively annihilate the vortex induced oscillations, when the quantum of actuations is about three times the free stream velocity. The dynamic adaptability of the proposed control strategy and its ability to suppress vortex induced oscillations is verified. The exact quantum of actuation involved in wake control is achieved by integrating a control equation to decide the actuator response in the form of a closed loop feed back system. Simulations are extended to high Reynolds number flows by employing eddy viscosity based turbulence models. The three actuator system is found to effectively suppress vortex induced oscillations.  相似文献   

17.
The interactions between an uneven wall and free stream unsteadiness and their resultant nonlinear influence on flow stability are considered by means of a related model problem concerning the nonlinear stability of streaming flow past a moving wavy wall. The particular streaming flows studied are plane Poiseuille flow and attached boundary-layer flow, and the theory is presented for the high Reynolds number regime in each case. That regime can permit inter alia much more analytical and physical understanding to be obtained than the finite Reynolds number regime; this may be at the expense of some loss of real application, but not necessarily so, as the present study shows. The fundamental differences found between the forced nonlinear stability properties of the two cases are influenced to a large extent by the surprising contrasts existing even in the unforced situations. For the high Reynolds number effects of nonlinearity alone are destabilizing for plane Poiseuille flow, in contrast with both the initial suggestion of earlier numerical work (our prediction is shown to be consistent with these results nevertheless) and the corresponding high Reynolds number effects in boundary-layer stability. A small amplitude of unevenness at the wall can still have a significant impact on the bifurcation of disturbances to finite-amplitude periodic solutions, however, producing a destabilizing influence on plane Poiseuille flow but a stabilizing influence on boundary-layer flow.  相似文献   

18.
We study the linearized stability of a planar dynamical model describing two-phase perfect fluid circulating around a circle with a sufficiently large radius within a central gravitational field. The model is associated with the spatial and temporal structure of the zonally averaged global-scale atmospheric longitudinal circulation around the Earth. Two cases are studied separately; in the first one, the simulations were carried out using the rigid lid approximation at the upper boundary of the outer atmospheric layer. In the second one, the free boundary nonlinear conditions (kinematic and dynamic) were assumed on the outer atmospheric layer. For the both cases, a certain family of steady, explicit solutions which have circular streamlines was considered. The governing equations were linearized at these solutions to find the typical wave numbers of the interfacial wave perturbation to the basic state at which the destabilizing effect of shear, which overcomes the stabilizing effect of stratification, occurs. It is shown that for the both cases, the model always have the same two potentially unstable wave modes while there always exist two wave modes which are stable for any wavelengths. The behavior of the stable and unstable modes were compared for the both cases to investigate the effects of the free boundary on the mixing process at the interface.  相似文献   

19.
For the general linear scalar time-delay systems of arbitrary order with two delays, this article provides a detailed study on the stability crossing curves consisting of all the delays such that the characteristic quasipolynomial has at least one imaginary zero. The crossing set, consisting of all the frequencies corresponding to all the points in the stability crossing curves, are expressed in terms of simple inequality constraints and can be easily identified from the gain response curves of the coefficient transfer functions of the delay terms. This crossing set forms a finite number of intervals of finite length. The corresponding stability crossing curves form a series of smooth curves except at the points corresponding to multiple zeros and a number of other degenerate cases. These curves may be closed curves, open ended curves, and spiral-like curves oriented horizontally, vertically, or diagonally. The category of curves are determined by which constraints are violated at the two ends of the corresponding intervals of the crossing set. The directions in which the zeros cross the imaginary axis are explicitly expressed. An algorithm may be devised to calculate the maximum delay deviation without changing the number of right half plane zeros of the characteristic quasipolynomial (and preservation of stability as a special case).  相似文献   

20.
Flow separation behind two-dimensional ellipses with aspect ratios ranging from 0, a flat plate, to 1, a circular cylinder, were investigated for Reynolds numbers less than 10 using both a cellular automata model and a commercial computational fluid dynamics software program. The relationship between the critical aspect ratio for flow separation and Reynolds number was determined to be linear for Reynolds numbers greater than one. At slower velocities, the critical aspect ratio decreases more quickly as the Reynolds number approaches zero. The critical Reynolds numbers estimated for flow separation behind a flat plate and circular cylinder agree with extrapolations from experimental observations. Fluctuations in the values of the stream function for laminar flow behind the ellipses were found at combinations of Reynolds number and aspect ratio near the critical values for separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号