首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naphthol isomers, including α‐naphthol (α‐NAP) and β‐naphthol (β‐NAP), are used widely in various fields and are harmful to the environment and human health. The qualitative and quantitative determination of naphthol isomers is therefore of great significance. Herein, β‐cyclodextrin (β‐CD)‐platinum nanoparticles (Pt NPs)/graphene nanosheets (GNs) nanohybrids (β‐CD‐PtNPs/GNs) were prepared for the first time using a simple wet chemical method and characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and electrochemical methods, and then applied successfully in the ultrasensitive electrochemical detection of naphthol isomers. The results show that the oxidation peak currents of naphthol isomers obtained at the glassy carbon (GC) electrode modified with β‐CD‐PtNPs/GNs are much higher than those at the β‐CD/GNs/GC, PtNPs/GNs/GC, GNs/GC, and bare GC electrodes. Additionally, compared with other electrochemical sensors developed previously, the proposed electrode results in improved detection limits of about one order of magnitude for α‐NAP (0.23 nM ) and three orders of magnitude for β ‐NAP (0.37 nM ).  相似文献   

2.
《Electroanalysis》2004,16(11):961-965
A simple and rapid voltammetric method has been developed for the quantitative determination of α‐tocopheryl acetate (α‐TOAc) in pharmaceutical preparations. Studies with linear scan (LSV), square‐wave (SQWV) and differential pulse voltammetry (DPV) were carried out using platinum microelectrodes. A well‐defined, irreversible oxidation wave/peak was obtained at 1.30 V (vs. Ag/AgCl reference electrode.) The use of SQWV or DPV technique provides a precise determination of α‐tocopheryl acetate using the multiple standard addition method. The statistical parameters and the recovery study data clearly indicate good reproducibility and accuracy of the method. Accuracy of the results assessed by recovery trials was found within the 99.3% to 103.5%, and 99.1% to 101.4%, for SQWV and DPV, respectively. The quantification limits for the both voltammetric techniques were found to be 6×10?5 M (SQWV) and 7×10?5 M (DPV). Analysis of the authentic samples containing α‐TOAc showed no interference with common additives and excipients, such as unsaturated fatty acids (co‐formulated as glycerine esters) and vitamin A (as retinol or β‐carotene). The method proposed does not require any pretreatment of the pharmaceutical dosage forms. A gas chromatography determination of α‐TOAc in real samples was also performed for comparison.  相似文献   

3.
《Electroanalysis》2017,29(5):1214-1221
A highly sensitive enzymeless electrochemical glucose sensor has been developed based on the simply prepared cathodized gold nanoparticle‐modified graphite pencil electrode (AuNP‐GPE). Cyclic voltammetry (CV) experiments show that AuNP‐GPE is able to oxidize glucose partially at low potential (around −0.27) whereas the bare GPE cannot oxidize glucose in the entire tested potential windows. Besides, fructose and sucrose cannot be oxidized at potential lower than +0.1 V at AuNP‐GPE. As a result, the glucose oxidation peak at around −0.27 V is suitable enough for selective detection of glucose in the presence of fructose and sucrose. Cathodization of AuNP‐GPE under optimum condition (‐1.0 V for 30 s) in the same glucose solution before voltammetric measurement enhanced glucose oxidation peak current around −0.27 V to achieve an efficient electrochemical sensor for glucose with a detection limit of 12 μM and dynamic range between 0.05 to 5.0 mM with a good linearity (R2= 0.999). Almost no interference effect was observed for sensing of glucose in the presence of ascorbic acid, alanine, phenylalanine, fructose, sucrose, and NaCl.  相似文献   

4.
A rapid method for sensitive voltammetric determination of dinotefuran residue was reported. The proposed method was based on the electrocatalytic reduction of dinotefuran on β‐cyclodextrin‐graphene composite modified glassy carbon electrode (β‐CD‐rGO/GCE), giving rise to a higher reduction signal to dinotefuran relative to the bare (GCE) and graphene modified electrode (rGO/GCE). Moreover, a further signal enhancement was observed when the modified electrode incubated in solution at low temperature (0 °C) for a short time. The reduction mechanism and binding affinity were also discussed. The external standard calibration curve was obtained from linear sweep voltammetry in the range of 0.5 to 16.0 μM with a detection limit of 0.10 μM. In addition to optimization of pretreatment, this electrochemical method has been applied to the dinotefuran residue determination in millet samples with the detection limit of 0.01 mg kg?1 and compared with an high performance liquid chromatography method. The proposed electrode and analysis methods were proven to be sensitive, accurate and rapid under the used conditions.  相似文献   

5.
《Electroanalysis》2004,16(18):1536-1541
The exploitation of the catalytic‐adsorptive effect in the Co(II)‐dioxime‐nitrite systems provides a significant increase of the Co adsorptive stripping voltammetric response and subsequently the influence of the interfering elements such as Ni and Zn is strongly diminished. The purpose of the present paper was to study voltammetric properties of Co and Ni in a supporting electrolyte containing ammonia buffer, α‐furil dioxime in the absence and in the presence of nitrite, by differential pulse polarography and adsorptive stripping voltammetry. Results of detailed studies aimed at optimizing the analytical parameters for simultaneous catalytic adsorptive stripping voltammetric determination of Co and Ni in the form of complexes with α‐furil dioxime in the presence of Zn matrix are presented. In the supporting electrolyte of composition 0.1 M NH4Cl, 0.5 M NH3, 4×10?5 M αFD, 0.5 M NaNO2 the linearity range amounts from 0.03 to 2.4 μg/L for Co and from 0.3 to 9 μg/L for Ni for 20 s of accumulation. The method enables the determination of Co and Ni in the presence of a great excess of Zn with the detection limit equal to 0.02 μg/L Co and 0.2 μg/L Ni obtained for a 20 s accumulation time.  相似文献   

6.
《Analytical letters》2012,45(3):459-470
Abstract

A highly sensitive electrochemical biosensor for the detection of trace amount of 1‐naphthol was designed. Acid‐denatured DNA were immobilized onto the pretreated glassy carbon electrode (GCE(ox)) surface. Two well‐defined oxidation peaks were observed on the denatured DNA‐modified GCE(ox) at about +0.80 V and +1.10 V (vs. Ag/AgCl) in 0.10‐M acetate buffer (pH 5.0). The peak current of the guanine residue decreased with increasing concentration of 1‐naphthol. The optimum experimental conditions for the detection of 1‐naphthol were explored, and the calibration was linear for 1‐naphthol in the range of 1.0×10?8?1.1×10?6 M, with a correlation coefficient of 0.998. The limit of detection (LOD) was 5.0×10?9 M (S/N=3).  相似文献   

7.
A novel chemically modified electrode for stripping determination of cadmium is presented in this paper, based on carbon nanotube‐hydroxyapatite (CNT‐HAP) nanocomposite, which can be prepared by an easy and effective one‐step sonication. The newly synthesized nanocomposite was characterized with FTIR, TEM, and electrochemical methods. Due to the combination of the strong absorption ability of HAP and excellent electroanalytical properties of CNTs, the GC/CNT‐HAP electrode has been successfully used for determination of Cd2+ by anodic stripping voltammetry with a linear range of 20 nM–3 μM. The sensitivity and detection limit are 25.6 μA/μM and 4 nM, respectively. The practical application of the proposed electrode has been carried out for the determination of trace levels of Cd2+ in real water samples.  相似文献   

8.
A novel host reagent of β‐cyclodextrin‐2,4‐dihydroxyacetophenone‐phenylhydrazine(β‐CDP‐DHPH) was synthesized and characterized by IR and 1H NMR spectra. A highly selective and sensitive spectrofluorimetric determination of trace amounts of cadmium was proposed based on the reaction between Cd2+ and β‐CDP‐DHPH at pH 10.0. The molar ratio of β‐CDP‐DHPH to Cd2+ was 1:1. The linear range of this method was 0.56‐120 μg·L?;1 with a detection limit of 0.20 μg·L?;1. The interferences of 39 common ions in the determination of cadmium were investigated, and the results showed that the host reagent had a quite high selectivity. This method was rapid and simple in determination of trace amounts of cadmium in mineral, tap and river water.  相似文献   

9.
In this study, a Tosflex (a perfluoro‐anion‐exchange membrane) modified glassy carbon electrode has been used to detect 2‐naphthalenol (2‐naphthol) in aqueous solutions in order to demonstrate the electroanalytical application of Tosflex. 2‐naphthol polymerizes upon electrochemical oxidation at a glassy carbon electrode; however, the current related to this oxidation is too small for analytical purpose at low concentration level. A Tosflex polymer modified glassy carbon electrode (TFGCE) was found of having capability to improve the detection limit because 2‐naphthol molecules deprotonated in basic solutions to form 2‐naphtholate anions that were accumulated to TFGCE by the anion‐exchange characteristic of Tosflex. The accumulated 2‐naphtholate anions were determined with the following differential pulse voltammetry. With 3 minutes accumulation at +0.05 V, the dependence of oxidation current versus concentration was linear from 8×10?7 M to 1×10?5 M with a regression coefficient of 0.999 and a detection limit of 2×10?7 M. Unlike many other anion‐exchange polymer modified electrodes, the TFGCE is stable at highly basic condition.  相似文献   

10.
《Electroanalysis》2006,18(23):2337-2342
The voltammetric behavior of α‐tocopherol in the presence of vegetable oil is studied at a polypyrrole modified Pt electrode in a 1,2‐dichloroethane‐ethanol medium with cyclic voltammetry. Cyclic voltammogram of α‐tocopherol showed a well‐defined oxidation peak; the peak potential shifting toward less positive and a much higher peak current obtained at a polypyrrole modified electrode than that obtained at the unmodified Pt electrode. An electroanalytical method for the determination of α‐tocopherol based on its electrochemical oxidation at the polypyrrole modified Pt electrode is developed. Using differential pulse voltammetry, the peak currents were found to increase linearly with the α‐tocopherol concentration over the range of 5.0 to 300 μM, with a sensitivity of 5.38×10?2 A L mol?1 and the limit of detection of 1.5 μM (S/N=3), the detection time being about 90 s for each assay. The interference of other synthetic antioxidants such as TBHQ, BHA and BHT to the analysis of α‐tocopherol was investigated. The developed method is applied to the quantification of tocopherols in six vegetable oils, showing that the results are in good agreement with those by HPLC method.  相似文献   

11.
α‐NiS and β‐NiS hollow spheres were successfully synthesized via the Kirkendall effect under different hydrothermal conditions. The obtained α‐NiS and β‐NiS hollow spheres were evaluated as electrode materials for supercapacitors. Importantly, the α‐NiS hollow sphere electrode has a large specific capacitance (562.3 F g?1 at 0.60 A g?1) and good cycling property (maintaining about 97.5 % at 2.4 A g?1 after 1000 cycles). Furthermore, the as‐prepared α‐NiS and β‐NiS hollow spheres were successfully applied to construct electrochemical glucose sensors. Especially, the α‐NiS hollow spheres exhibit a good sensitivity (155 μA mM?1 cm?2), low detection limit (0.125 μM ), and a wide linear range.  相似文献   

12.
《Electroanalysis》2017,29(12):2708-2718
An inexpensive stability−indicating anodic voltammetric method for rapid determination of two non‐classical β ‐lactam antibiotics; Meropenem (MP) and Ertapenem (EP) has been developed and validated. The method was based on the enhancement of voltammetric response at a disposable graphite pencil electrode (GPE). Differential pulse voltammetric (DPV) method was developed for quantification of both drugs in B−R buffer solution (pH 2.0) at GPE. The GPE displayed very good voltammetric behavior with significant enhancement of the peak current compared to glassy carbon electrode (GCE). Stress stability studies were performed using 0.5 M of either HCl or NaOH and H2O2. Mass and infrared spectroscopy were used for identification of degradants and their pathways were illustrated. Under optimal conditions, the peak currents showed a linear dependence with drug concentrations. The achieved limits of detection (LOD) were 1.23, 2.07 and 1.50 μM for MP and two waves of EP, respectively. The developed voltammetric method was successfully applied for direct determination of MP and EP in drug substances, pharmaceutical vials and in presence of either their corresponding hydrolytic, oxidative‐degradants or interfering substances with no potential interferences. The differential pulse voltammograms were highly advantageous and applicable in QC laboratories for rapid, selective micro‐determination of MP and EP.  相似文献   

13.
An electrochemical sensor for metronidazole (MTZ) was built via the surface modification of a carbon paste electrode (CPE) by a film obtained through electropolymerization of α‐cyclodextrin (CPEα‐CD). The CPEα‐CD was characterized by cyclic voltammetry (CV) and atomic force microscopy (AFM), by both techniques was demonstrated that the polymer film is coating the electrode surface. The electroreduction behaviour of MTZ in HClO4 media as a supporting electrolyte was studied by differential‐pulse voltammetric (DPV) technique. The DPV electrochemical process was observed to be diffusion controlled and irreversible. Under optimal conditions, the peak current was proportional to MTZ concentration in the range of 0.5 to 103.0 μM with a detection limit of 0.28±0.02 μM. The method was successfully applied to quantify of MTZ in pharmaceutical formulations. In addition, this proposed MTZ sensor exhibited good reproducibility, long‐term stability and fast current response.  相似文献   

14.
In this study, a novel and highly sensitive electrochemical method for simultaneous determination of catechol (CC) and hydroquinone (HQ) was developed, which worked at GCE modified with Nano cobalt (Nano-Co) by electrodeposition and L-Cysteine by electrochemical polymerization. The Nano-Co/L-Cysteine GCE was investigated by cyclic voltammetry (CV), SEM and EIS. The excellent conditions have been selected including supporting electrolyte, pH, accumulation time and scan rate. The calibration curves of were obtained that the linear regression equation was I=0.0734c+6×10−6 in the range of 5.8 μM to 103 μM (R2=0.9942) for CC and the linear regression equation was I=0.0566c+5×10−6 in the range of 5.8 μM to 100 μM (R2=0.9967) for HQ. The obtained detection limits of CC and HQ both were 6×10−7 M. The modified electrode was successfully applied to the simultaneous determination of CC and HQ in water samples.  相似文献   

15.
A non‐enzyme photoelectrochemical (PEC) glucose sensor based on α‐Fe2O3 film is investigated. The α‐Fe2O3 film was fabricated via a simple spin coating method. The proposed glucose sensor exhibits good selectivity, a fast response time of <5 s, a linear range of 0.05 to 6.0 mM, sensitivity of 17.23 μA mM?1 cm?2 and a detection limit of 0.05 μM. Meanwhile, the excellent performances of the α‐Fe2O3 sensor were obtained in reproducibility and the long‐term stability under ambient condition. The linear amperometric response of the sensor covers the glucose levels in physiological and clinical for diabetic patients. Therefore, this non‐enzyme PEC sensor based on α‐Fe2O3 film has a great potential application in the development of glucose sensors.  相似文献   

16.
The reaction of glycidyl phenyl ether (GPE) with 1‐aminoalkanes‐intercalated α‐zirconium phosphate (α‐ZrP·1‐aminoalkane): 1‐aminoalkanes 1‐aminopropane (α‐ZrP·Pr), 1‐aminobutane (α‐ZrP·Bu), 1‐aminooctane (α‐ZrP·Oct), and 1‐aminohexadecane (α‐ZrP·Hed) was carried out at varying temperatures for 1 h periods. Reaction progress was not observed until the reactants were heated to 80 °C or above. On increasing the temperature, the conversion factors increased such that, at 140 °C, conversions of 62% (α‐ZrP·Pr), 60% (α‐ZrP·Bu), 67% (α‐ZrP·Oct), and 64% (α‐ZrP·Hed) were obtained. The thermal stabilities as latent initiators were tested: GPEs reacted with α‐ZrP·Pr, α‐ZrP·Bu, and α‐ZrP·Oct at 40 °C for 360 h achieved conversions of 83, 55, and 59%, respectively. In contrast, the reaction in the presence of α‐ZrP·Hed did not proceed at 40 °C. The order of the thermal stability of GPE in the presence of α‐ZrP·1‐aminoalkane intercalation compounds was: α‐ZrP·Hed > α‐ZrP·Bu ≈ α‐ZrP·Oct > α‐ZrP·Pr. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1854–1861  相似文献   

17.
A novel approach was proposed for the simple and rapid electrochemical determination of paracetamol (PC) in the presence of uric acid in body fluids. The voltammetric determination of PC is based on the electrochemical reduction of N-acetyl-p-benzoquinoneimine formed simultaneously on the electrochemically treated pencil graphite (ETPG) electrode during the measurement. ETPG electrodes were prepared by the potential cycling between −0.3 V and +2.0 V in 0.1 M H3PO4 solution. The electrochemical performance of the ETPG electrode was evaluated by adsorptive transfer stripping differential pulse voltammetry (ATSDPV). The resulting sensor showed good performance for the determination of PC in human blood serum samples with a linear range of 0.05–2.5 μM and a highly reproducible response (RSD of 3.1%). The calculated detection limit was 2.5 nM (S/N = 3). The proposed method does not require any sample pretreatment, prevents the interference of uric acid and allows the determination of PC directly in blood serum samples.  相似文献   

18.
《Electroanalysis》2004,16(12):1051-1058
The voltammetric behavior of α‐ketoglutarate (α‐KG) at the hanging mercury drop electrode (HMDE) has been investigated in acetate buffer solution. Under the optimum experimental conditions (pH 4.5, 0.2 M NaAc‐HAc buffer solution), a sensitive reductive wave of α‐KG was obtained by linear scan voltammetry (LSV) and the peak potential was ?1.18 V (vs. SCE), which was an irreversible adsorption wave. The kinetic parameters of the electrode process were α=0.3 and ks=0.72 1/s. There was a linear relationship between peak current ip, α‐KG and α‐KG concentration in the range of 2×10?6–8×10?4 M α‐KG. The detection limit was 8×10?7 M and the relative standard deviation was 2.0% (Cα‐KG=8×10?4 M, n=10). Applications of the reductive wave of α‐KG for practical analysis were addressed as follows: (1) It can be used for the quantitative analysis of α‐KG in biological samples and the results agree well with those obtained from the established ultraviolet spectrophotometric method. (2) Utilizing the complexing effect between α‐KG and aluminum, a linear relationship holds between the decrease of peak current of α‐KG Δip and the added Al concentration Cequation/tex2gif-inf-5.gif in the range of 5.0×10?6–2.5×10?4 M. The detection limit was 2.2×10?6 M and the relative standard deviation was 3.1% (Cequation/tex2gif-inf-6.gif=4×10?5 M, n=10). It was successfully applied to the detection of aluminum in water and synthetic biological samples with satisfactory results, which were consistent with those of ICP‐AES. (3) It was also applied to study the effect of AlIII on the glutamate dehydrogenase (GDH) activity in the catalytically reaction of α‐KG+NH +NADH?L ‐glutamate+NAD++H2O by differential pulse polarography (DPP) technique. By monitoring DPP reductive currents of NAD+ and α‐KG, an elementary important result was found that Al could greatly affect the activity of GDH. This study could be attributed to intrinsic understanding of the aluminum's toxicity in enzyme reaction processes.  相似文献   

19.
A novel α‐zirconium phosphate/polyaniline (α‐ZrP/PANI) hybrid film used as K+ ion sensor was fabricated on carbon paper by electrochemical method. Mechanisms of film formation and detection of K+ ions were also proposed. The exfoliated α‐ZrP was mixed with PANI and deposited on carbon paper. The resultant α‐ZrP/PANI film exhibited a good current response to K+ ion with different concentrations. It also showed a wide logarithmic linear response in detecting K+ ions in the ranges of 10?8–10?4 M and 10?4–10?2 M, respectively. The results can be attributed to the synergetic effect of α‐ZrP and PANI.  相似文献   

20.
In this work, a novel sandwich‐type electrochemical immunosensor with electroactive nickel hexacyanoferrate nanoparticles (NiHCFNPs) as matrix was constructed for α‐fetoprotein (AFP) detection in a signal‐off manner by using FeS2?AuNPs nanocomposite catalyzed insoluble precipitation to significantly inhibit the electrochemical signal. Initially, the NiHCFNPs with excellent electrochemical property was modified on the electrodeposited nano‐Au electrode to obtain a strong initial electrochemical signal. Subsequently, another nano‐Au layer was formed for immobilization of capture antibody (Ab1). In the presence of target AFP, the prepared FeS2?AuNPs‐Ab2 bioconjugate could be specifically recognized and immobilized on electrode through the sandwich‐type immunoreaction. The FeS2 with large specific surface areas were used as scaffolds to load abundant mimicking enzyme AuNPs. With the help of hydrogen peroxide (H2O2), FeS2?AuNPs with peroxidase‐like activity accelerated the 4‐chloro‐1‐naphthol (4‐CN) oxidation with generation of insoluble precipitation on electrode, which would greatly hinder the electron transfer and thus caused the decrease of electrochemical signal for quantitative determination of AFP. This approach achieved a wide dynamic linear range from 0.0001 to 100 ng mL?1 with an ultralow limit detection of 0.028 pg mL?1. Especially, the proposed AFP immunosensor can be applied to detect human serum samples with satisfactory results, indicating a potential application in clinical monitoring of tumor biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号