首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein–ligand interaction is the key factor in modeling of drugs and water molecules act as a bridge in linking protein and ligand, which was clearly depicted by Deepa (Cryst. Growth Des. 2017 , 17, 1299). This work is intended toward the significance of water cluster in the midst of ligand binding. Further the idea was accounted to have in‐depth analysis of the individual water molecules that interact with each part of the ligand, since in reality only very few crystal water molecules bind with the CK2 ligands. Further, bulk solvent effects have been modeled using Tomasi's polarized continuum model at M06‐2X/def2‐QZVP levels of theory has increased the stability of the complexes. The strength of individual water molecules and their binding nature with ligand will be depicted in detail by interaction energy and two body interaction energy calculations at M06‐2X/def2‐QZVP level of theory. The impact of noncovalent interactions (Hydrogen, σ‐hole and Π‐hole bonding) in bridging between water cluster cavity and ligand were deeply analysed using structural properties (bond distance and bond angle), 2DNCI plot, AIM and NBO analyses. The HOMO, LUMO energy values are discussed in detail for both monomer (ligand) and complexes (ligand with water clusters). It is expected that this study paves a novel path for the scientific community in modeling drugs with the clear understanding of the impact of water molecules on ligand.  相似文献   

2.
Zn‐metalloproteins are a major class of targets for drug design. They constitute a demanding testing ground for polarizable molecular mechanics/dynamics aimed at extending the realm of quantum chemistry (QC) to very long‐duration molecular dynamics (MD). The reliability of such procedures needs to be demonstrated upon comparing the relative stabilities of competing candidate complexes of inhibitors with the recognition site stabilized in the course of MD. This could be necessary when no information is available regarding the experimental structure of the inhibitor–protein complex. Thus, this study bears on the phosphomannose isomerase (PMI) enzyme, considered as a potential therapeutic target for the treatment of several bacterial and parasitic diseases. We consider its complexes with 5‐phospho‐d ‐arabinonohydroxamate and three analog ligands differing by the number and location of their hydroxyl groups. We evaluate the energy accuracy expectable from a polarizable molecular mechanics procedure, SIBFA. This is done by comparisons with ab initio quantum‐chemistry (QC) calculations in the following cases: (a) the complexes of the four ligands in three distinct structures extracted from the entire PMI‐ligand energy‐minimized structures, and totaling up to 264 atoms; (b) the solvation energies of several energy‐minimized complexes of each ligand with a shell of 64 water molecules; (c) the conformational energy differences of each ligand in different conformations characterized in the course of energy‐minimizations; and (d) the continuum solvation energies of the ligands in different conformations. The agreements with the QC results appear convincing. On these bases, we discuss the prospects of applying the procedure to ligand‐macromolecule recognition problems. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Coarse‐grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein–ligand binding processes. We chose two protein–ligand systems, the levansucrase–sugar (glucose or sucrose), and LinB–1,2‐dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand‐binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse‐grained (CG) ligand molecules revealed potential ligand‐binding sites on the protein surfaces other than the real ligand‐binding sites. The ligands bound most strongly to the real ligand‐binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase–sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand‐binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein–ligand binding processes. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Localized water molecules in the binding pockets of proteins play an important role in noncovalent association of proteins and small drug compounds. At times, the dominant contribution to the binding free energy comes from the release of localized water molecules in the binding pockets of biomolecules. Therefore, to quantify the energetic importance of these water molecules for drug design purposes, we have used the double-decoupling approach to calculate the standard free energy of tying up a water molecule in the binding pockets of two protein complexes. The double-decoupling approach is based on the underlying principle of statistical thermodynamics. We have calculated the standard free energies of tying up the water molecule in the binding pockets of these complexes to be favorable. These water molecules stabilize the protein-drug complexes by interacting with the ligands and binding pockets. Our results offer ideas that could be used in optimizing protein-drug interactions, by designing ligands that are capable of targeting localized water molecules in protein binding sites. The resulting free energy of ligand binding could benefit from the potential free energy gain accompanying the release of these water molecules. Furthermore, we have examined the theoretical background of the double-decoupling method and its connection to the molecular dynamics thermodynamic integration techniques.  相似文献   

5.
Thermodynamic stability of metal–aminoacid complexes in water is discussed in terms of the Gibbs free energy of water–ligand exchange processes, and the electronic stabilizing factors thoroughly investigated by means of 1‐electron and 2‐electron density properties. Hexacoordinated complexes formed between iron cations and glycine molecules acting as monodentate or bidentate ligands have been chosen as targets for the current study. Results agree with experimental findings, and complexes formed with bidentate ligands are found to be more stable than those formed with monodentate ones. The larger the number of the coordinated glycine molecules the more stable is the complex. Fe(III) complexes are more stable than Fe(II) ones, but differences are small and the Fe3+/Fe2+ exchange process appears to be energetically feasible for these complexes. Formation of the second glycine–iron interaction involving the amino nitrogen in the bidentate ligands is enthalpycally unfavorable but takes place due to the large entropy rise of the process. The larger stability of Fe(III) complexes is due however to the balance between energetic and solvation terms, which is favorable to these complexes. Electron density properties account satisfactorily for the electronic energy changes along the complex formation in terms of ligand–metal electron transfer and covalent bond orders. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

6.
We report the development and validation of a novel suite of programs, FITTED 1.0, for the docking of flexible ligands into flexible proteins. This docking tool is unique in that it can deal with both the flexibility of macromolecules (side chains and main chains) and the presence of bridging water molecules while treating protein/ligand complexes as realistically dynamic systems. This software relies on a genetic algorithm to account for the flexibility of the two molecules as well as the location of bridging water molecules. In addition, FITTED 1.0 features a novel application of a switching function to retain or displace key water molecules from the protein-ligand complexes. Two independent modules, ProCESS and SMART, were developed to set up the proteins and the ligands prior to the docking stage. Validation of the accuracy of the software was achieved via the application of FITTED 1.0 to the docking of inhibitors of HIV-1 protease, thymidine kinase, trypsin, factor Xa, and MMP to their respective proteins.  相似文献   

7.
Generally, computer-aided drug design is focused on screening of ligand molecules for a single protein target. The screening of several proteins for a ligand is a relatively new application of molecular docking. In the present study, complexes from the Brookhaven Protein Databank were used to investigate a docking approach of protein screening. Automated molecular docking calculations were applied to reproduce 44 protein-aromatic ligand complexes (31 different proteins and 39 different ligand molecules) of the databank. All ligands were docked to all different protein targets in altogether 12090 docking runs. Based on the results of the extensive docking simulations, two relative measures, the molecular interaction fingerprint (MIF) and the molecular affinity fingerprint (MAF), were introduced to describe the selectivity of aromatic ligands to different proteins. MIF and MAF patterns are in agreement with fragment and similarity considerations. Limitations and future extension of our approach are discussed.  相似文献   

8.
The structural dynamics of the cAMP-dependent protein kinase catalytic subunit were modeled using molecular dynamics computational methods. It was shown that the structure of this protein as well as its complexes with ATP and peptide ligand PKI(5-24) consisted of a large number of rapidly inter-converting conformations which could be grouped into subsets proceeding from their similarity. This cluster analysis revealed that conformations which correspond to the “opened” and “closed” structures of the protein were already present in the free enzyme, and most surprisingly co-existed in enzyme–ATP and enzyme–PKI(5-24) complexes as well as in the ternary complex, which included both of these ligands. The results also demonstrated that the most mobile structure segments of the protein were located in the regions of substrate binding sites and that their dynamics were most significantly affected by the binding of the ATP and peptide ligand.  相似文献   

9.
The understanding of noncovalent interactions in protein–ligand complexes is essential in modern biochemistry and should contribute toward the discovery of new drugs. In the present review, we summarize recent work aimed at a better understanding of the physical nature of molecular recognition in protein–ligand complexes and also at the development and application of new computational tools that exploit our current knowledge on structural and energetic aspects of protein–ligand interactions in the design of novel ligands. These approaches are based on the exponentially growing amount of information about the geometry of protein structures and the properties of small organic molecules exposed to a structured molecular environment. The various contributions that determine the binding affinity of ligands toward a particular receptor are discussed. Their putative binding site conformations are analyzed, and some predictions are attempted. The similarity of ligands is examined with respect to their recognition properties. This information is used to understand and propose binding modes. In addition, an overview of the existing methods for the design and selection of novel protein ligands is given.  相似文献   

10.
It is known that the HIV-1 integrase (IN) strand transfer inhibitors include the chelating fragments forming the coordinating bonds with two Mg2+ ions placed in the IN active site. The subject of the article is the role of these coordination bonds on stability of ligand–IN complexes. For this purpose, a set of ligand–IN complexes was investigated theoretically and experimentally. The theoretical model is based on the quantum-chemistry calculations of coordinating bonds geometry and energy. Solvent effects were taking into account using the implicit water model and the two-stage calculation scheme developed previously. For the experimental part of our study a set of the ligands was synthesized, and their IC50 values of IN inhibiting have been measured. It is shown that the main contribution to ligand–IN complexes stability is caused by the substitution of water molecules by the ligand in the first coordination sphere of two Mg2+ ions, and the change in the polarization energy of the bulk water. It is shown, that acid–base equilibrium and tautomeric forms of the ligands should be taken into account to improve the prediction ability of the theoretical estimations. All these factors are controlled by the chelating fragments of the ligands. It is demonstrated that our theoretical approach based on the consideration of the coordinating bonds allows to separate active ligands (inhibitors) from inactive ones.  相似文献   

11.
A systematic semiempirical quantum mechanical study of the interactions between proteins and ligands has been performed to determine the ability of this approach for the accurate estimation of the enthalpic contribution to the binding free energy of the protein–ligand systems. This approach has been applied for eight test protein–ligand complexes with experimentally known binding enthalpies. The calculations were performed using the semiempirical PM3 approach incorporated in the MOPAC 97, ZAVA originally elaborated in Algodign, and MOPAC 2002 with MOZYME facility packages. Special attention was paid to take into account structural water molecules, which were located in the protein–ligand binding site. It was shown that the results of binding enthalpy calculations fit experimental data within ~2 kcal/mol in the presented approach. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

12.
Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH3 group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH3 at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.  相似文献   

13.
Chemical approaches toward the bioinorganic chemistry of molybdenum and tungsten enzymes had been either biomimetic (structural modeling) or bioinspired (functional modeling). Among the dithiolene type of ligands, bdt (1,2-benzene dithiolate) and related aromatic molecules as model ene–dithiolene ligands were used to react with pre-designed molybdenum complexes in organic solvents. Whereas in the alternative approach mnt (maleonitrile dithiolate) is used to mimic the ligand backbone of the central atom in the active sites of these enzymes using molybdate or tungstate as the metal source in water. Structural–functional models are known for some selected enzymes, namely, sulfite oxidase, aldehyde ferredoxin oxidoreductase, tungsten formate dehydrogenase, acetylene hydratase, polysulfide reductase and dissimilatory nitrate reductase. The protocols and methodologies adopted to achieve these model systems compared with various other model systems described in this review give testimony to chemist's ability, through chemical manipulations, to achieve the model systems which may potentially serve as structural–functional mimics of natural enzyme systems.  相似文献   

14.
New mixed ligand Cr(III) complexes were prepared where diamine or oxalato ligands are coordinated together with either tellurito, selenito, or hydrogenselenito ions to form nine octahedral complexes. The complexes were characterized by chemical analyses, IR and UV-visible spectra, magnetic, and conductivity measurements. The tellurito and selenito ligands act as monodentate ligands, coupled with the bidentate diamine ligands. On the other hand, they act as bidentate chelate ligands when coordinated together with the oxalate ligand. However, hydrogenselenite ion act as a monodentate ligand coupled with the oxalate ligand. IR spectra indicated that the inorganic ligands are coordinated to the Cr(III) ion through their oxygen atoms. One of the bulky diamine molecules, 1,2-pn or 1,3-pn, was freed from the coordination sphere of Cr(III) on the addition of the bulky inorganic anions and was replaced by two water molecules.  相似文献   

15.
Water is essential for the proper folding of proteins and the assembly of protein–protein/ligand complexes. How water regulates complex formation depends on the chemical and topological details of the interface. The dynamics of water in the interdomain region between an E3 ubiquitin ligase (MDM2) and three different peptides derived from the tumor suppressor protein p53 are studied using molecular dynamics. The peptides show bimodal distributions of interdomain water densities across a range of distances. The addition of a hydrocarbon chain to rigidify the peptides (in a process known as stapling) results in an increase in average hydrophobicity of the peptide–protein interface. Additionally, the hydrophobic staple shields a network of water molecules, kinetically stabilizing a water chain hydrogen‐bonded between the peptide and MDM2. These properties could result in a decrease in the energy barrier associated with dehydrating the peptide–protein interface, thereby regulating the kinetics of peptide binding. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
In the present study the dependence of the reaction rate of carbon-carbon reductive elimination from R3PAu(MeOH)(CH3)2 (R=Me, Et) complexes inside [Ga4L6]12− metallocage on the nature of the phosphine ligand is investigated by computational means. The reductive elimination mechanism is analyzed in methanol solution and inside the metallocage. Classical molecular dynamics simulations reveal that the smaller the gold complex (which depends on the phosphine ligand size) the larger the number of solvent molecules encapsulated. The size of the phosphine ligands defines the space that is left available inside the cavity that can be occupied by solvent molecules. The Gibbs energy barriers calculated at DFT level, in excellent agreement with experiment both in solution and in the metallocage, show that the presence/absence of explicit solvent molecules inside the cavity significantly modifies the reaction rate.  相似文献   

17.
Most computer-aided drug design methods ignore the presence of crystallographically-determined water molecules in the binding site of a target protein. In this paper, our de novo ligand design methods are applied to the X-ray crystal structure of bacterial neuraminidase in the presence of some selected water molecules. We have found that, for this particular protein, the complete removal of all bound water molecules leads to difficulties in generating any potential ligands if the unsatisfied hydrogen-bonding sitepoints left by removing these water molecules are to be satisfied by a ligand. As more of the crystallographically determined water molecules are allowed in the binding site, it becomes much easier to generate ligands in larger numbers and with wider chemical diversity. This example shows that, in some cases, bound water molecules can be more accessible for hydrogen bonding to an incoming ligand than the actual protein binding sitepoints associated with them. From the point of view of de novo ligand design, water molecules can thus act as versatile amphiprotic hydrogen-bonding sitepoints and reduce the conformational constraints of a particular binding site.  相似文献   

18.
Water molecules mediating polar interactions in ligand-protein complexes can substantially contribute to binding affinity and specificity. To account for such water molecules in computer-aided drug design, we performed an extensive search in the Cambridge Structural Database (CSD) to identify the geometrical criteria defining interactions of water molecules with ligand and protein. In addition, with ab initio calculations the propensity of ligand hydration was evaluated. Based on this information, we developed an algorithm (AcquaAlta) to reproduce water molecules bridging polar interactions between ligand and protein moieties. This approach was validated with 20 crystal structures and yielded a match of 76% between experimental and calculated water positions. When water molecules establishing only weak interactions with the protein were neglected, the match could be improved to 88%. Supported by a pharmacophore-based alignment tool, the solvation algorithm was then applied to the docking of oligopeptides to the periplasmic oligopeptide binding protein A (OppA). Calculated waters based on the crystal poses matched an average of 66% of the experimental waters. With water molecules calculated based on the docked ligands, the average match with the experimental waters dropped to 53%.  相似文献   

19.
The impact of ligand protonation on metal speciation dynamics is quantitatively described. Starting from the usual situation for metal complex formation reactions in aqueous systems, i.e., exchange of water for the ligand in the inner coordination sphere as the rate-determining step (Eigen mechanism), expressions are derived for the lability of metal complexes with protonated and unprotonated ligand species being involved in formation of the precursor outer-sphere complex. A differentiated approach is developed whereby the contributions from all outer-sphere complexes are included in the rate of complex formation, to an extent weighted by their respective stabilities. The stability of the ion pair type outer-sphere complex is given particular attention, especially for the case of multidentate ligands containing several charged sites. It turns out that in such cases, the effective ligand charge can be considerably different from the formal charge. The lability of Cd(II) complexes with 1,2-diaminoethane-N,N'-diethanoic acid at a microelectrode is reasonably well predicted by the new approach.  相似文献   

20.
An approach to quantum mechanical investigation of interactions in protein–ligand complexes has been developed that treats the solvation effect in a mixed scheme combining implicit and explicit solvent models. In this approach, the first solvation shell of the solvent around the solute is modeled with a limited number of hydrogen bonded explicit solvent molecules. The influence of the remaining bulk solvent is treated as a surrounding continuum in the conductor‐like screening model (COSMO). The enthalpy term of the binding free energy for the protein–ligand complexes was calculated using the semiempirical PM3 method implemented in the MOPAC package, applied to a trimmed model of the protein–ligand complex constructed with special rules. The dependence of the accuracy of binding enthalpy calculations on size of the trimmed model and number of optimized parameters was evaluated. Testing of the approach was performed for 12 complexes of different ligands with trypsin, thrombin, and ribonuclease with experimentally known binding enthalpies. The root‐mean‐square deviation (RMSD) of the calculated binding enthalpies from experimental data was found as ~1 kcal/mol over a large range. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号