首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The synthesis and self‐assembly behavior of pentablock copolymers consisting of Pluronic F127 (PEO100‐PPO65‐PEO100) and poly(2, 2, 3, 3, 4, 4, 5, 5‐octafluoropentyl methacrylate) (POFPMA) is herein described. Using the difunctional potassium alcoholate of F127, K+O‐(PEO100‐PPO65‐PEO100)‐OK+, as the macroinitiator, the POFPMA‐F127‐POFPMA pentablock copolymers were synthesized via oxyanion‐initiated polymerization. The chain length of POFPMA can be controlled by the original molar ratio of macroinitiator to OFPMA monomer, that is, F‐monomer. The composition and chemical structure of POFPMA‐F127‐POFPMA pentablock copolymers have been characterized by FTIR, 1HNMR, and 19F NMR spectroscopy, and gel permeation chromatography techniques. The solution behavior of POFPMA‐F127‐POFPMA copolymers was investigated by the methods of surface tension, cloud point, transmission electron microscopy, and high performance particle sizer (HPPS). The results indicate that these Pluronic F127‐based block copolymers modified with fluorinated segments possess relatively high surface activity and low cloud points, depending on various factors, such as the length of fluorinated block, the concentration of the copolymers in aqueous solution, and the adscititious inorganic salt. TEM measurements showed that the pentablock copolymers can self‐assemble in aqueous solution to form various micellar morphologies. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3029–3041, 2008  相似文献   

2.
A hybrid supramolecular polymeric hydrogel is conveniently constructed via host–guest interaction of a host cyclodextrin polymer (poly‐CD) with a guest α‐bromonaphthalene polymer (poly‐BrNp) and mixing with 6‐thio‐β‐cyclodextrin (β‐SH‐CD) modified gold nanoparticles (GPCDs) in aqueous solution. According to the dynamic oscillatory data, the hydrogel exhibits markedly enhanced stiffness compared with the GPCD‐free one (both G′ and G“ values are almost twice as high as those of the original GPCD‐free hydrogel) due to the introduction of the inorganic gold nanoparticles. This hybrid supramolecular polymeric hydrogel has a rapid and excellent self‐healing property (only about 1 min, and the G′ and G” of the self‐healed hydrogel almost turned back to their original levels after 1 hour) in air (without adding any solvent or additive).  相似文献   

3.
Foam generated by sparging of aqueous solutions of the block copolymers P85 (PEO26‐PPO39‐PEO26), F88 (PEO103‐PPO40‐PEO103), F127 (PEO99‐PPO65‐PEO99), and L64 (PEO13‐PPO30‐PEO13), has been characterized by foam volume measurements. Uniform wet foam formed, which, after drainage of the major part of the liquid, transformed to polyhedral dry foam. Conductance jumps across the foam column indicated that structural changes occur at a certain liquid fraction. The dry foams of P85 were less stable than those of F88 and F127. The latter copolymers showed similar foam stability over a period of one hour. The L64 foam was very unstable. It is suggested that the stability of the dry foams is determined by the resistance to rupture of the foam films. Foam stability is discussed in relation to earlier studies on surface rheology and to the thickness of thin foam films. A general relationship for all PEOx‐PPOy‐PEOx block copolymers between the dilatational modulus and the foam stability could not be found. However, the ability to form thick adsorption layers, accompanied by steric repulsive forces across foam films, appears to be a general foam‐stabilizing factor. Surface diffusion coefficients of a fluorescent probe in single‐block copolymers foam films are also reported for a brief discussion on Gibbs‐Marangoni stabilization.  相似文献   

4.
The effect on β‐lactoglobulin foamability and foam stability of the poly(ethylene oxide)‐poly(propylene oxide) block copolymers F127 (PEO99‐PPO65‐PEO99), molecular weight 12500 g/mol, and P85 (PEO26‐PPO39‐PEO26), molecular weight 4600 g/mol, has been investigated at constant protein concentration, 10 µM (0.2 mg/L), and varying block copolymer concentrations, ranging from 0.02 to 1600 µM. Foam was generated by means of air sparging and the foam volume and liquid volume of the foam were measured for one hour. It was found that foam stabilized by F127 or P85 in the concentration range 20–1600 µM contained a larger liquid volume initially than pure β‐lactoglobulin foam. Furthermore, β‐lactoglobulin foamability was only marginally affected by the presence of F127, while it was reduced in an interval of low P85 concentrations. The protein foam stability was retained in the presence of the larger polymer F127, whereas P85 largely reduced the stability, indicating that the size of the polymeric surfactant is important. The results are discussed in relation to surface rheological properties and forces acting across foam films. Steric repulsion generated between the surfaces of foam films is suggested to be the main stabilizing factor in dry foam containing F127. The instability of the mixed β‐lactoglobulin/P85 system is suggested to be caused by two effects. First, there are incompatible stabilization mechanisms of block copolymer and protein, as supported by previous surface rheological data. Second, there is a reduced importance of long‐range steric repulsion when P85 is added, compared to the case where F127 and β‐lactoglobulin are mixed.  相似文献   

5.
The effect of the aggregation state of Pluronic copolymer (PEO100–PPO65–PEO100, F127) and the concentration of hydrophilic modified ibuprofen (Ibuprofen–PEG800, IP800) on the interaction between F127 and IP800 was systematically investigated by nuclear magnetic resonance, dynamic light scatter (DLS), surface tension, and freeze-fractured transmission electron microscopy. In the solution of F127 unimers (5 °C), F127 unimers tended to wrap around IP800 micelles, and the binding model of F127 unimers to IP800 micelles transferred from wrapping around to partly threading through with increasing IP800 concentration. The latter binding model was straightly confirmed by nuclear Overhauser enhancement spectroscopy. As the aggregation state of F127 is in the beginning of the micellization (20 °C), the addition of IP800 significantly promoted the micellization of F127 to form the F127/IP800 complex with F127 micelles as the skeleton called the F127–micelle complex. The sudden decrease of the size obtained from DLS stemmed from the disruption of the F127–micelle complex and accompanying rehydration of PPO which is weaker compared with refs. The amount of IP800 to disintegrate the F127–micelle complex increased in the F127–micelle-dominated solution (40 °C) compared to that at 20 °C.  相似文献   

6.
Injectable hydrogels have been commonly used as drug‐delivery vehicles and tried in tissue engineering. Injectable self‐healing hydrogels have great advantage over traditional injectable hydrogels because they can be injected as a liquid and then rapidly form bulk gels in situ at the target site under physiological conditions. This study develops an injectable thermosensitive self‐healing hydrogel based on chain‐extended F127 (PEO90‐PPO65‐PEO90) multi‐block copolymer (m‐F127). The rapid sol–gel transition ability under body temperature allows it to be used as injectable hydrogel and the self‐healing property allows it to withstand repeated deformation and quickly recover its mechanical properties and structure through the dynamic covalent bonds. It is hoped that the novel strategy and the fascinating properties of the hydrogel as presented here will provide new opportunities with regard to the design and practical application of injectable self‐healing hydrogels.

  相似文献   


7.
We synthesized heterobifunctional poly(ethylene oxide) (PEO) (α‐formyl‐ω‐mercapto‐PEO; CHO‐PEO400‐SH, average molecular weight of PEO part being 400), which had both an aldehyde group as a binding site with amino group of protein and a mercapto group for gold electrode surface. The CHO‐PEO400‐SH was adsorbed on a gold electrode surface and cytochrome c (cyt.c) was fixed on this modified electrode. The redox response of covalently immobilized cyt.c was observed on the cyclic voltammetry measurement, showing that CHO‐PEO400‐SH can be used as a linker to fix cyt.c on an electrode. Another type of heterobifunctional PEO (α‐formyl‐ω‐(2‐pyridyldithio)‐PEO; CHO‐PEO300‐SS‐Py), which had an aldehyde group and a 2‐pyridinethiol (2‐Py) through disulfide bond, was synthesized to form co‐adsorbed monolayer of PEO chain and 2‐Py on an electrode surface. It was expected, due to the spacer with shorter PEO chain and lower surface density, that better redox response of the fixed cyt.c was obtained. However, the redox response of fixed cyt.c was not detected on the CHO‐PEO300‐SS‐Py modified gold electrode. Instead, this heterobifunctional PEO was found to function as a good promoter for cyt.c dissolved in phosphate buffer solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we present aluminum phosphate nanocrystals, prepared by a hydrothermal reaction, using amphiphilic triblock copolymer F127 [(EO)106(PO)70(EO)106] as a morphology‐directing template. By verifying the pH from 10 to 12, the morphology progression of AlPO4 nanocrystals from nanoparticles to nanoparticle‐aggregated nanowires, and finally to multi‐strand nano‐ropes, was successfully demonstrated. The most influential factors in the morphology process were the initial pH level, the participation of surfactant‐template F127, and the change in pH during the reaction. We proposed a pH‐dependent model to illustrate both the growth of AlPO4 nanocrystals inside F127 amphiphilic domains and the chemical driving force that aggregated the nanoparticles into chain‐shaped nanowires. The incorporation of water molecules as H‐bonding linkers, to combine single nanowires into multi‐strand nano‐ropes, is also discussed in this model. Powder X‐ray diffraction (XRD) patterns of the nanoparticle‐aggregated nanowires and multi‐strand nano‐ropes were consistent with a mixed phase of berlinite and cristobalite structures, corresponding to the low‐temperature form (a‐form), while the AlPO4 nanoparticles showed a pure berlinite phase only.  相似文献   

9.
Inspired by the distinct chemical and physical properties of nanoparticles, here a novel open‐tubular capillary electrochromatography column was prepared by electrostatic assembly of poly(diallydimethylammonium chloride) onto the inner surface of a fused‐silica capillary, followed by self‐adsorption of negatively charged SH‐β‐cyclodextrin/gold nanoparticles. The formation of the SH‐β‐cyclodextrin/gold nanoparticles coated capillary was confirmed and characterized by scanning electron microscopy and energy dispersive spectrometry. The results of scanning electron microscopy and energy dispersive spectrometry studies indicated that SH‐β‐cyclodextrin/gold nanoparticles were successfully coated on the inner wall of the capillary column. The performance of the SH‐β‐cyclodextrin/gold nanoparticles coated capillary was validated by the analysis of six pairs of chiral drugs, namely zopiclone, carvedilol, salbutamol, terbutaline sulfate, phenoxybenzamine hydrochloride, and ibuprofen. Satisfactory enantioseparation results were achieved, confirming the use of gold nanoparticles as the support could enhance the phase ratio of the open‐tubular capillary column. Additionally, the stability and reproducibility of the SH‐β‐cyclodextrin/gold nanoparticles coated capillary column were also investigated. Then, this proposed method was well validated with good linearity (≥0.999), recovery (90.0–93.5%) and repeatability, and was successfully used for enantioseparation of ibuprofen in spiked plasma samples, which indicated the new column's potential usage in biological analysis.  相似文献   

10.
Previous studies on hydrogels crosslinked by acrylated PEO99–PPO65–PEO99 triblock copolymer (F127DA) micelles demonstrate outstanding strength and toughness, which is attributed to the efficient energy dissipation through the hydrophobic association in the micelles. The current study further focuses on how the solvent property affects the structures and the mechanical properties of F127DA micelle crosslinked polyacrylamide gels. Binary solvents comprised of dimethyl sulfoxide (DMSO) and water are used to adjust the polymer/solvent interactions, which consequently tune the conformations of the polymer chains in the network. The presence of DMSO significantly decreases the strength but increased the stretchability of the gels, whereas the overall tensile toughness remained unchanged. In situ small‐angle X‐ray scattering measurements reveal the deformation of micelles along with the stretching direction. A structure evolution mechanism upon solvent change is proposed, according to the experimental observations, to explain influence of solvent quality on the mechanical properties of the micelle‐crosslinked gels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 473–483  相似文献   

11.
In the synthesis of InPO4 crystals, using F127 [(EO)106(PO)70(EO)106] as a structure‐directing template, a morphology tunable progress was observed during the crystal evolution. By verifying the initial pH from 1.0 to 12.0, the morphology is evolved from single crystal, through sub‐micro crystallites, and finally to crystalline nanoparticles. The most influential factors in the morphology evolution are the initial pH level, the participation of surfactant‐template F127, and the change in pH during the reaction.  相似文献   

12.
Thermo‐reversible phase behaviors and rheological properties of a pentablock terpolymer solution, poly(N‐isopropylacrylamide)‐b‐poly(ethylene oxide)‐b‐poly(propylene oxide)‐b‐poly(ethylene oxide)‐b‐poly(N‐isopropylacrylamide) (PNIPAM150‐PEO136‐PPO45‐PEO136‐PNIPAM150), are investigated in comparison with its precursor, PEO136‐PPO45‐PEO136 (F108). It is found that the critical gelation concentration of the terpolymer solution is only about 11 wt %, which is significantly lower than that of F108 solution (~22 wt %). The 11 wt % terpolymer solution displays higher viscosity, stronger gel strength, and fast thermo‐responsive behavior compared with the 22 wt % F108 solution. The 11 wt % terpolymer solution shows a typical Newtonian fluid behavior at 30 °C due to the presence of individual spherical micelles, and presents an elastic gel property at 41 °C because of the formation of the close‐packed micelle aggregates. Cryogenic transmission electron microscopy (cryo‐TEM) and variable‐temperature 1H NMR results demonstrate that the sol–gel phase transition mechanism is mainly related to the hydrophilic/hydrophobic transition of PPO and PNIPAM groups by external temperature stimulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1335–1342  相似文献   

13.
A new type of chiral magnetic nanoparticle was prepared from covalently linked magnetic nanoparticles (Fe3O4) and heptakis‐(6‐O‐triisopropylsilyl)‐β‐cyclodextrin (6‐TIPS‐β‐CD). The resulting selectors (TIPS‐β‐CD‐MNPs) combined the good magnetic properties Fe3O4 and efficient chiral recognition ability of 6‐TIPS‐β‐CD. The enantioselectivity of TIPS‐β‐CD‐MNPs towards 1‐(1‐naphthyl)ethylamine was six times higher than that of the parent β‐CD modified Fe3O4 particles.  相似文献   

14.
以嵌段共聚物F127 (PEO106PPO70PEO106, MW=12600)为模板剂, 异丙醇铝和钛酸四丁酯为金属源, 低分子量的酚醛树脂为碳源, 通过溶胶-凝胶三元共组装法合成了具有双孔径分布的C-Al2O3-TiO2纳米复合材料.用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)及N2吸附-脱附对该复合材料进行结构表征. 结果显示, 当铝钛原子的摩尔比为1:10 时, 对应的纳米复合材料具有较好的有序介孔结构, 其双孔径分别为3.9和6.5 nm, 比表面积可达259 m2·g-1, 孔容0.37 cm3·g-1. 以三元乙丙橡胶(EPDM)为粘结剂, 与介孔纳米复合材料混合制备涂层. 通过调节复合材料中铝钛摩尔比和涂层厚度, 红外发射率在0.450-0.617之间可调.  相似文献   

15.
On the basis of the change in electronic and induced circular dichroism spectra for complex formation, the complexation of 4‐dimethylaminoazobenzene (DAAB) with four kinds of cyclodextrins (α‐ and β‐cyclodextrin (CD), heptakis(2,6‐di‐O‐methyl)‐β‐cyclodextrin, and heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin) was studied in methanol–water and dimethyl sulfoxide–water mixtures. It was found that the trans and cis isomers of DAAB form two different types of complex (inclusion and lid type) with CDs, depending on the kinds of CDs and solvents. Further, we have examined the effect of CDs on the thermal cis‐to‐trans isomerization of DAAB. The accelerated or decelerated effect on the thermal isomerization was observed upon adding CDs. The effects of CDs on the thermal isomerization are discussed in connection with the complexation of the cis‐isomer of DAAB with CDs. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 481–487, 2002  相似文献   

16.
Amphiphilic H‐shaped [poly(ethylene oxide)]3‐polystyrene‐[poly(ethylene oxide)]3(PEO3‐PS‐PEO3) copolymer was synthesized by 2‐methyl‐2‐nitrosopropane (MNP) induced single electron transfer nitroxide radical coupling (SETNRC) using PEO3‐(PS‐Br) as a single precursor. First, the A3B star‐shaped precursor PEO3‐(PS‐Br) was synthesized by atom transfer radical polymerization (ATRP) using three‐arm star‐shaped PEO3‐Br as macro‐initiator. Then, in the presence of Cu(I)Br/Me6TREN, the bromide group at PS end was sequentially transferred into carbon‐centered radical by single electron transfer and then nitroxide radical by reacting with MNP in mixed solvents of dimethyl sulfoxide (DMSO)/tetrahydrofuran (THF), and in situ generated nitroxide radical could again capture another carbon‐centered radical by fast SETNRC to form target PEO3‐PS‐PEO3 copolymer. The MNP induced SETNRC could reach to a high efficiency of 90% within 60 min. After the product PEO3‐PS‐PEO3 was cleaved by ascorbic acid, the SEC results showed that there was about 30% fraction of product formed by single electron transfer radical coupling (SETRC) between carbon‐centered radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Among the three compounds reported here, namely N‐(4‐fluorophenyl)‐β‐d ‐mannopyranosylamine, (I), N‐(3‐fluorophenyl)‐β‐d ‐mannopyranosylamine, (II), and N‐(2‐fluorophenyl)‐β‐d ‐mannopyranosylamine, (III), all with chemical formula C12H16FNO5, (I) and (II) are isostructural, whereas (III) assumes the same packing arrangement as the unfluorinated analogue N‐phenyl‐β‐d ‐mannopyranosylamine, (IV), which has been reported previously. Similarities with respect to the intermolecular hydrogen‐bonding patterns exist across the series (I)–(III). A packing motif that distinguishes the shared packing arrangement of (I) and (II) from that of (III) is a C—F...H—C chain of graph set C(4) that is preserved in the formal exchange of F and H atoms at the 4‐ and 3‐positions on the aromatic ring of (I) and (II), but is replaced by a different chain of graph set C(5) when the F atom is located at the 2‐position of the aromatic ring in (III). The steric role of the F atom in (I)–(III) is ambiguous but is examined here in detail.  相似文献   

18.
《Analytical letters》2012,45(2):335-347
Abstract

Capillary zone electrophoresis resolutions of 2,4‐dinitrophenyl labeled amino acids (DNP‐AAs) enantiomers using three N‐methylated amino‐β‐cyclodextrins (CDs) [6I‐deoxy‐6I‐monomethylamino‐β‐CD (M‐A‐βCD), 6I‐deoxy‐6I‐dimethylamino‐β‐CD (diM‐A‐βCD), 6I‐deoxy‐6I‐trimethylammonium‐β‐cyclodextrin (triM‐A‐βCD)] as chiral selectors were investigated. These cationogenic selectors, differing in ionization and steric properties, exhibited clear differences in their enantioselectivities.

The differences in enantioresolution observed under identical acid‐base conditions (pH 5.2), providing comparable effective charges/mobilities of the CDs, e.g., excellent separations of single enantiomeric couples (triM‐A‐βCD, M‐A‐βCD), multicomponent mixtures of enantiomers (M‐A‐βCD), and mixtures of positional isomers (M‐A‐βCD, diM‐A‐βCD), indicated the importance of structural parameters (different degrees of methylation) of the studied chiral selectors in the separation mechanism.

The differences in enantioresolution observed under various acid base conditions (pH 5.2 and 9.6), providing significant differences of effective charges/mobilities of CDs, e.g., a dramatic decrease in enantioresolution as well as achiral resolution with uncharged M‐A‐βCD and preserved resolution with permanently charged triM‐A‐βCD, indicated the importance of charge of the studied chiral selectors in the separation mechanism.

The present study clearly showed that the studied CD derivatives have great potential as chiral selectors in capillary zone electrophoresis separations of DNP‐AAs and that their effective use is related to the character of the analyte (structure, hydrophobicity) as well as to working conditions (pH).  相似文献   

19.
Di‐ and trisaccharide thioglycoside building blocks, ethyl (2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→2)‐3‐O‐allyl‐4,6‐di‐O‐benzyl‐1‐thio‐α‐d‐mannopyranoside, ethyl (2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→2)‐6‐O‐acetyl‐3‐O‐allyl‐4‐O‐benzyl‐1‐thio‐α‐d‐mannopyranoside and ethyl (2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→4)‐[(2,3,4‐tri‐O‐benzyl‐β‐d‐xylopyranosyl)‐(1→2)]‐3‐O‐allyl‐6‐O‐benzyl‐1‐thio‐α‐d‐mannopyranoside, corresponding to repetitive structures in the capsular polysaccharide (CPS) of Cryptococcus neoformans have been synthesised using silver triflate‐promoted couplings between benzobromoxylose and properly protected mannose ethyl thioglycosides. The blocks contain an orthogonal allyl group in the 3‐position of the mannose residue to allow continued formation of the (1→3)‐linked mannan backbone of the CPS. They have benzyl ethers as persistent protecting groups to facilitate access to the acetylated target structures. Assembly of the blocks employing DMTST as promoter in diethyl ether afforded in high yield and complete stereoselectivity penta‐ and hexasaccharide motifs from C. neoformans serotype A–C. The latter were deallylated into new acceptors to allow synthesis of larger CPS‐fragments.  相似文献   

20.
Alkene and alkyne functional polyester‐based dendrimers of generation 1 to 4 have been prepared and reacted under free‐radical conditions with 2‐acetamido‐2‐deoxy‐1‐thio‐β‐D ‐glucose (GlcNAc‐SH). As the alkene‐dendrimers underwent the addition of one thiyl radical per ene group whereas each yne group of alkyne‐dendrimers was saturated by two thiyl radicals, a collection of glycodendrimers with glycan density ranging from six to ninety‐six GlcNAc per dendrimer was obtained. The recognition properties of the prepared glycodendrimers toward the wheat germ agglutinin (WGA) were evaluated by enzyme‐linked lectin assay (ELLA). The eight glycodendrimers were excellent ligands showing IC50 values in the nanomolar range and relative potencies per sugar unit up to 2.27 e6 when compared to monosaccharidic GlcNAc used as monovalent reference. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2422–2433  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号