首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, activated carbon was blended with grape stalks powder to adsorb methylene blue (MB) dye with various concentrations from a wastewater. For this purpose, five independent variables involving pH (2–13), contact time (5–270 min), grape stalks powder dosage (0.1–10 g/l), methylene blue initial concentration (20–300 mg/l), and activated carbon dosage (0.1–10 g/l) for methylene blue adsorption were studied. The Central Composite Design (CCD) under Response Surface Methodology (RSM) was applied to estimate the independent variables effects on the methylene blue adsorption. The pseudo- first order, pseudo-second order, Elovich and intraparticle diffusion models were employed to study the adsorption kinetics and isotherm. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models were applied to investigate the adsorption isotherm. It was concluded that the intraparticle diffusion isotherm and pseudo-second order kinetic models could show the best results. Furthermore, some data such as physical adsorption (by analyzing FTR and applying some standard equations) and mean free energy (E) were discovered in this research. Finally, activated carbon blended with grape stalks powder as an effective bio-adsorbent for the methylene blue reduction from a wastewater was introduced.  相似文献   

2.
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N(2) adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation.  相似文献   

3.
本文以自制柚子皮生物质活性炭为原料,采用凝胶-溶胶法合成TiO2/柚子皮生物质活性炭复合材料(TiO2/BAC)。对复合材料进行SEM、FTIR、XRD等表征,并研究该复合材料对中性红、亚甲基蓝染料及甲醛的吸附降解性能。结果表明,在复合材料中柚子皮生物质活性炭的添加量为7 g、预吸附时间为2 h时,对染料具有最佳的吸附降解效果,复合材料在循环使用5次后对染料的吸附降解率仍达到了80 %以上。当活性炭的添加量为6 g、复合材料的添加量为2 g时,复合材料对甲醛的吸附降解达到最大,可达61%。表明该复合材料对中性红、亚甲基蓝染料及甲醛具有良好的吸附降解效果,有望用于废水染料的去除和家居甲醛净化。  相似文献   

4.
In this work, activated carbon prepared from pine cone (PCAC) with ZnCl2 as an activation agent under microwave radiation was investigated. The activation step was performed at the microwave input power of 400 W and radiation time of 5 min. The properties of activated carbon were characterized by N2 adsorption Brunauer–Emmett–Teller (BET), scanning electron microscopy and Fourier transform infrared spectroscopy. Results showed that the BET surface area, Langmuir surface area, and total pore volume of PCAC were 939, 1,486 m2/g and 0.172 cm3/g, respectively. Adsorption capacity was demonstrated by the iodine numbers. The adsorptive property of PCAC was tested using methylene blue dye. Equilibrium data was best fitted by the Langmuir isotherm model, showing a monolayer adsorption capacity of 60.97 mg/g. The pseudo-first- and pseudo-second-order kinetic models were examined to evaluate the kinetic data, and the rate constants were calculated. Adsorption of the dyes followed pseudo-first order kinetics. Thermodynamic parameters such as free energy, enthalpy and entropy of dye adsorption were obtained.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(12):8717-8722
Egg shell-based activated carbon was successfully synthesized by the simple chemical activation process. Orthophosphoric acid and sodium hydroxide used as an activation agent. XRD pattern reveals the hexagonal structure of activated carbon. The functional group presents in activated carbon was identified using FT-IR spectroscopy. SEM images show irregular shapes of carbon. The photocatalytic performance of investigated activated carbon by illuminating methylene blue dye under UV–Visible irradiations. Photocatalytic activity of activated carbon results maximum degradation efficiency of 83%. Adsorption efficiency have been increased with respect of time for degradation of dye. Free radicals and superoxide’s play a significant role is decolourization of methylene blue. Photocatalytic activity of activated carbon synthesized by Orthophosphoric acid results shows the high degradation efficiency when compared to NaOH.  相似文献   

6.
Biomass waste, which is abundantly available has been studied as low cost biosorbent for dye sequestration from waste water. The present review reports on recent development for remediation of methylene blue dye by agricultural waste and fruit peel waste material. The aim of this study was to revise latest literature in the field of dye adsorption and discuss the dye adsorption capacity of different types of adsorbents. The activated carbon prepared from several types of biomass waste material enhances the adsorption efficiency after modification. The variety of activating agents, method of activation, characterization of biosorbent material like SEM, EDAX, BET surface area and FTIR analysis has been explored in the present review. The dye adsorption factors such as effect of pH, agitation time, temperature, adsorbate and adsorbent dose were discussed. The detailed investigation on applicability of isotherm model, kinetic model and thermodynamic parameters has also been presented. The adsorption kinetics and adsorption isotherm model focus on selectivity of adsorbent. Adsorption mechanism, Influence of surface area, influence of pHpzc and comparative study of biomass waste adsorbent with other adsorbents have been carried out. The use of biomass waste adsorbents is economically feasible, environmental healthy and found to have outstanding removal capacity of dyes.  相似文献   

7.
Fly ash, natural zeolite, and unburned carbon separated from fly ash have been employed as low-cost adsorbents for dye adsorption in methylene blue-containing wastewater. It is found that the unburned carbon exhibits a much higher adsorption capacity than raw fly ash and natural zeolite. The adsorption capacities of fly ash, natural zeolite, and unburned carbon for methylene blue are 2 x 10(-5), 5 x 10(-5), and 2.5 x 10(-4) mol/g, respectively. Investigation also indicates that adsorption is influenced by initial dye concentration, particle size, dye solution pH, and adsorption temperature. Adsorption on unburned carbon increases with the initial dye concentration, solution pH, and temperature, but reduces with the increasing particle size. Kinetic studies show that adsorption of methylene blue on fly ash, natural zeolite, and unburned carbon can be best described by the pseudo-second-order adsorption model and that adsorption is a two-step diffusion process. The apparent activation energies for methylene blue adsorption on unburned carbon in the first and second diffusion processes are 12.4 and 39.3 kJ/mol, respectively.  相似文献   

8.
The rate of dye adsorption from aqueous effluents onto palm kernel shell (PKS) activated carbon has been studied experimentally using the batch adsorption method. The adsorption rates of methylene blue on PKS for systems of different initial dye concentrations are modeled using a film-pore-concentration dependent surface diffusion (FPCDSD) model. The FPCDSD model is sufficiently general and can be reduced easily to describe other simplified models. Using the FPCDSD model, only a single set of mass transfer parameters is required to describe the methylene blue/PKS system for different initial concentrations. A different set of mass transfer parameters are needed to obtain the best fitting if the pore diffusion is not included in the model.  相似文献   

9.
The present study narrates the eminent role of agricultural wastes as adsorbents viz., Indian almond shell carbon (IASC), ground nut shell carbon (GSC), areca nut shell carbon (ASC), tamarind shell carbon (TSC) and cashew nut shell carbon (CSC) for the removal of Azure A (AA) dye from waste water. Different experimental parameters such as effect of initial concentration, contact time, dose, pH and particle size have been studied. The experimental results were analysed using Freundlich, Langmuir, Temkin, Redlich–Peterson and Dubinin–Radushkevich isotherm models. Different kinetic equations (first order, pseudo first order and pseudo second order) were applied to study the adsorption kinetics of AA on various activated carbons. Surface morphology of the adsorbents before and after adsorption is studied by Scanning Electron Microscopy (SEM). FT-IR studies revealed the presence of functional groups of dye on the adsorbents. It is inferred from the experimental result that the activated carbons (IASC, GSC, ASC, TSC and CSC) from agricultural wastes can be applied as an adsorbent substitute to commercial activated carbon (CAC) in the removal of AA dye from waste water.  相似文献   

10.
KOH活化木屑生物炭制备活性炭及其表征   总被引:5,自引:2,他引:3  
以木屑热裂解的生物质炭为原料,氢氧化钾为活化剂,采用化学活化法制备活性炭,探讨了碱炭比、活化温度和活化时间对活性炭吸附亚甲基蓝吸附值的影响。 利用N2吸附实验、XRD和FTIR等实验技术,对原料与制备活性炭的结构与性能进行了表征。 结果表明,在碱炭质量比为1.5、活化温度750 ℃、活化时间2 h的条件下,所制备的活性炭对亚甲基蓝吸附值为255 mg/g,BET总比表面积为1514 m2/g,中孔比表面积为110 m2/g,吸附总孔容为0.821 cm3/g,中孔孔容为0.117 cm3/g,吸附平均孔径为2.170 nm。  相似文献   

11.
Pyrolysis has the potential of transforming used tyres into useful recyclable products. Pyrolytic carbon black is one of the most important products of tyre pyrolysis. Waste tyres were pyrolysed at 450 °C in a batch reactor under atmospheric pressure. The recovered pyrolytic carbon black residues were studied to investigate their characteristics for use as a possible adsorbent. EDX elemental analysis and surface area determinations were used to investigate the distinctive features of pyrolytic carbon black. Due to various inorganic additives of the original tyre that contaminated the carbon black obtained, it was treated with acid for demineralization. The demineralized carbon black was activated at 900 °C in a furnace. It was observed that acid treatment and activation increased the surface areas and decreased the concentration of contaminants. Furthermore, adsorption characteristics of methylene blue on acid‐treated and activated carbon black (prepared via acid treatment) were compared with those of commercial activated carbon in liquid phase adsorption. It was found that adsorption capacity of methylene blue on acid‐treated activated carbon black was greater.  相似文献   

12.
The present work was mainly focused on the single and binary adsorption of methylene blue(MB) and methyl orange(MO) from alcohol aqueous solution over rice husk based activated carbon(RHAC). The study of single dye adsorption equilibrium experiments found that the Langmuir adsorption model was consistent with the adsorption behavior of RHAC on MB and MO, indicating that it was a single layer adsorption. The adsorption behavior conformed to the pseudo-second-order kinetic model. The binary dye adsorption experiments showed that the Langmuir-Freundlich model could be applied to describe the adsorption behavior of RHAC on MB and MO. Comparation with the single dye system, the adsorption capacity on the binary dye system was larger, and there was "competitive adsorption" and "synergistic adsorption" effects existed. Meanwhile, the pseudo-second-order kinetic model also fit for the binary dye adsorption behavior.  相似文献   

13.
Batch experiments were carried out for the sorption of methylene blue onto rice husk particles. The operating variables studied were initial solution pH, initial dye concentration, adsorbent concentration, and contact time. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Langmuir isotherm equation. The monolayer sorption capacity of rice husks for methylene blue sorption was found to be 40.5833 mg/g at room temperature (32 degrees C). The sorption was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the sorption kinetics was found to follow a pseudo-second-order kinetic model. Also the applicability of pseudo second order in modeling the kinetic data was also discussed. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. The average external mass transfer coefficient and intraparticle diffusion coefficient was found to be 0.01133 min(-1) and 0.695358 mg/g min0.5. Analysis of sorption data using a Boyd plot confirms that external mass transfer is the rate limiting step in the sorption process. The effective diffusion coefficient, Di was calculated using the Boyd constant and was found to be 5.05 x 10(-04) cm2/s for an initial dye concentration of 50 mg/L. A single-stage batch-adsorber design of the adsorption of methylene blue onto rice husk has been studied based on the Langmuir isotherm equation.  相似文献   

14.
Mesoporous activated carbon has been prepared from coconut coir dust as support for adsorption of some model dye molecules from aqueous solutions. The methylene blue (MB) and remazol yellow (RY) molecules were chosen for study of the adsorption capacity of cationic and anionic dyes onto prepared activated carbon. The adsorption kinetics was studied with the Lagergren first- and pseudo-second-order kinetic models as well as the intraparticle diffusion model. The results for both dyes suggested a multimechanism sorption process. The adsorption mechanisms in the systems dyes/AC follow pseudo-second-order kinetics with a significant contribution of intraparticle diffusion. The samples simultaneously present acidic and basic sites able to act as anchoring sites for basic and acidic dyes, respectively. Calorimetric studies reveal that dyes/AC interaction forces are correlated with the pH of the solution, which can be related to the charge distribution on the AC surface. These AC samples also exhibited very short equilibrium times for the adsorption of both dyes, which is an economically favorable requisite for the activated carbon described in this work, in addition to the local abundance of the raw material.  相似文献   

15.
The present work aims to conduct a process optimization for the production of activated carbon from sludge of food processing industry. The significant feature of this sludge based activated carbon that makes it unique and economic is that it can be produced from waste material. The carbonaceous nature of this sludge does not allow its direct disposal to land because of excess organic and nutrient load contents, however, can be converted to a value added product. This process not only eliminates the need for further treatment of sludge but also reduce the cost of its handling, land filling, and transportation as well as the utilization in the same industry in the purification system.In the present work, activated carbon produced from pyrolysis of sludge was chemically activated by various activating agents. Optimization of impregnation ratio, impregnation time, activation temperature, and activation time was studied. The product was characterized through its iodine value and yield percentage. It was observed that the product had maximum iodine value of 624 mg g−1 with ZnCl2 as an activating agent. The FT-IR analysis depicts the presence of a variety of functional groups attached on the surface of activated carbon which are used in the interaction with the adsorbate during the process of adsorption. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The product formed was applied for methylene blue adsorption. The adsorption equilibrium of methylene blue dye was examined at room temperature. Adsorption isotherm was drawn by applying Langmuir and Freundlich models fitting the data indict, with an adsorption capacity of 23.6 mg g−1 and 14.2 mg g−1, respectively. The data show that methylene blue adsorption is best suited to Langmuir equation.  相似文献   

16.
This work deals with examining the performance of xerogel-based activated carbons (XACs), which were synthesized from aliphatic aldehydes of different carbon chain lengths. These XACs were compared with those synthesized from commonly synthesized XACs. The performance of the new xerogels was determined by examining the thermo-gravimetric analysis (TGA) and Fourier transform infrared (FTIR); however, the XACs were studied using infrared spectra (IR), scanning electron microscopy (SEM), and their adsorption capacities in gas and aqueous media (nitrogen adsorption, iodine number, adsorption of phenol and methylene blue, MB). The adsorption behavior of these investigated XACs to MB was studied in detail, using the Langmuir and Freundlich adsorption equations, in addition to kinetic (Lagergren first-order and pseudo-second-order) and thermodynamic models. The results show that long -chain aldehydes have a significant effect on increasing the total pore volume (VT). Glutaraldehyde-based carbon xerogel is recommended as an economically superior adsorbent with an SBET x yield of 571.9 m2/g. XACs from glutaraldehyde and propionaldehyde have higher surface area than commonly synthesized ACs from formaldehyde (F), Phenol/F, Tanin/F-, Polybenzooxazine/F, and Pyrogallol/F. The best models used for MB adsorption onto XACs are Langmuir and pseudo-second-order kinetic equations. The negative values of thermodynamic parameter ΔGº and positive values of ΔHº indicate the MB adsorption process is spontaneous and endothermic.  相似文献   

17.
The sorption of methylene blue (MB) and basic yellow 28 (BY28) dyes in water on Ag@ZnO/MWCNT (Ag‐doped ZnO loaded on multiwall carbon nanotubes) nanocomposite is investigated in a batch process, optimizing starting initial dye concentration, sonication time and adsorbent mass. Isotherms and kinetic behaviours of MB and BY28 adsorption onto Ag@ZnO/MWCNT were explained by extended Freundlich and pseudo‐second‐order kinetic models. Ag@ZnO/MWCNT was synthesized and characterized using X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy and Brunauer–Emmett–Teller analysis. According to the experimental data, adaptive neuro‐fuzzy inference system (ANFIS), generalized regression neural network (GRNN), backpropagation neural network (BPNN), radial basic function neural network (RBFNN) and response surface methodology (RSM) were developed, and applied to forecast the removal performance of the sorbent. The influence of process variables (i.e. sonication time, initial dye concentration, adsorbent mass) on the removal of MB and BY28 was considered by central composite rotatable design of RSM, GRNN, ANFIS, BPNN and RBFNN. The performances of the developed ANFIS, GRNN, BPNN and RBFNN models were compared with RSM mathematical models in terms of the root mean square error, coefficient of determination, absolute average deviation and mean absolute error. The coefficients of determination calculated from the validation data for ANFIS, GRNN, BPNN, RBFNN and RSM models were 0.9999, 0.9997, 0.9883, 0.9898 and 0.9608 for MB and 0.9997, 0.9990, 0.9859, 0.9895 and 0.9593 for BY28 dye, respectively. The ANFIS model was found to be more precise compared to the other models. However, the GRNN method is much easier than the ANFIS method and needs less time for analysis. So, it has potential in chemometrics and it is feasible that the GRNN algorithm could be applied to model real systems. The monolayer adsorption capacity of MB and BY28 was 292.20 and 287.02 mg g?1, respectively.  相似文献   

18.
Wastes must be managed properly to avoid negative impacts that may result. Open burning of waste causes air pollution which is particularly hazardous. Flies, mosquitoes and rats are major problems in poorly managed surroundings. Uncollected wastes often cause unsanitary conditions and hinder the efforts to keep streets and open spaces in a clean and attractive condition. During final disposal methane is generated, it is much more effective than carbon dioxide as a greenhouse gas, leading to climate change. Therefore, this study describes the possible valorization of two waste streams into activated carbon (AC) with added value due to copyrolysis. High efficiency activated carbon was prepared by the copyrolysis of palm stem waste and lubricating oil waste. The effects of the lubricating oil waste to palm stem ratio and the carbonization temperature on the yield and adsorption capacity of the activated carbon were investigated. The results indicated that the carbon yield depended strongly on both the carbonization temperature and the lubricating oil to palm stem ratio. The efficiency of the adsorption of methylene blue (MB) onto the prepared carbons increased when the lubricating oil to palm stem ratio increased due to synergistic effect. The effects of pH, contact time, and the initial adsorbate concentration on the adsorption of methylene blue were investigated. The maximum adsorption capacity (128.89 mg/g) of MB occurred at pH 8.0. The MB adsorption kinetics were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The results indicated that the adsorption of MB onto activated carbon is best described using a second order kinetic model. Adsorption data are well fitted with Langmuir and Freundlich isotherms. The thermodynamic parameters; ΔG°, ΔH° and ΔS° indicate that the adsorption is spontaneous and endothermic.  相似文献   

19.
A magnetic adsorbent was synthesized by modification of activated carbons with magnetic iron oxide nanoparticles (AC‐MIONs). The preparation method is fast and could be carried out in an ordinary condition. The AC‐MIONs were used as quite efficient adsorbents for separation of methylene blue (MB) from aqueous solution in a batch process. The effect of different parameters such as pH, temperature, electrolyte concentration, contact time and interfering ions on the removal of MB were studied. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 47.62 mg g‐1 and a langmuir adsorption equilibrium constant of 3.0 L mg‐1 were obtained. The obtained results revealed that AC‐MIONs were effective adsorbents for fast removal of MB from different aqueous solutions. This adsorbent was successfully used for removal of MB from Karoon River water.  相似文献   

20.
Microporous- and mesoporous-activated carbons were produced from longan seed biomass through physical activation with CO2 under the same activation conditions of time and temperature. The specially prepared mesoporous carbon showed the maximum porous properties with the specific surface area of 1773 m2/g and mesopore volume of 0.474 cm3/g which accounts for 44.1% of the total pore volume. These activated carbons were utilized as porous adsorbents for the removal of methylene blue (MB) from an aqueous solution and their effectiveness was evaluated for both the adsorption kinetics and capacity. The adsorption kinetic data of MB were analyzed by the pseudo-first-order model, the pseudo-second-order model, and the pore-diffusion model equations. It was found that the adsorption kinetic behavior for all carbons tested was best described by the pseudo-second-order model. The effective pore diffusivity (De) derived from the pore-diffusion model had the values of 4.657 × 10−7–6.014 × 10−7 cm2/s and 4.668 × 10−7–19.920 × 10−7 cm2/s for the microporous- and mesoporous-activated carbons, respectively. Three well-known adsorption models, namely the Langmuir, Freundlich and Redlich–Peterson equations were tested with the experimental MB adsorption isotherms, and the results showed that the Redlich–Peterson model provided the overall best fitting of the isotherm data. In addition, the maximum capacity for MB adsorption of 1000 mg/g was achieved with the mesoporous carbon having the largest surface area and pore volume. The initial pH of MB solution had virtually no effect on the adsorption capacity and removal efficiency of the methylene blue dye. Increasing temperature over the range from 35 to 55 °C increased the adsorption of methylene blue, presumably caused by the increase in the diffusion rate of methylene blue to the adsorption sites that could promote the interaction frequency between the adsorbent surface and the adsorbate molecules. Overall, the high surface area mesoporous carbon was superior to the microporous carbon in view of the adsorption kinetics and capacity, when both carbons were used for the removal of MB from an aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号