首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学会会志》2017,64(11):1340-1346
In this investigation, we describe substituent effect on the dipole moment, ionization potential, electron affinity, structure, frontier orbitals energy, in the trans‐Cl(OC)(H3P)3W(≡C‐para‐C6H4X) (X = H, F, SiH3, CN, NO2, SiMe3, CMe3, NH2, NMe2) complexes using MPW1PW91 quantum chemical calculations. The nature of chemical bond between the [Cl(OC)(H3P)3W] and [C‐para‐C6H4X]+ fragments was illustrated with energy decomposition analysis (EDA). Percentage composition in terms of the defined groups of frontier orbitals for these complexes was inspected to investigate the character in metal–ligand bonds. Quantum theory of atoms in molecules (QTAIM) was used for illustration of metal–ligand bonds in these complexes.  相似文献   

2.
Infinite dilution 29Si and 13C NMR chemical shifts were determined from concentration dependencies of the shifts in dilute chloroform and acetone solutions of para substituted O‐silylated phenols, 4‐R‐C6H4‐O‐SiR′2R″ (R = Me, MeO, H, F, Cl, NMe2, NH2, and CF3), where the silyl part included groups of different sizes: dimethylsilyl (R′ = Me, R″ = H), trimethylsilyl (R′ = R″ = Me), tert‐butyldimethylsilyl (R′ = Me, R″ = CMe3), and tert‐butyldiphenylsilyl (R′ = C6H5, R″ = CMe3). Dependencies of silicon and C‐1 carbon chemical shifts on Hammett substituent constants are discussed. It is shown that the substituent sensitivity of these chemical shifts is reduced by association with chloroform, the reduction being proportional to the solvent accessible surface of the oxygen atom in the Si‐O‐C link. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Influence of dibenzoylmethane's substituents in meta and para positions on chemical shift values of tautomers' characteristic protons was investigated in four solvents with 1H NMR spectroscopy: acetone‐d6, benzene‐d6, CDCl3 and deuterated dimethyl sulfoxide (DMSO‐d6). It was proved that the influence of substituents on chemical shifts strongly depends on the kind of the solvent; the greatest changes were observed in benzene‐d6 and the smallest in CDCl3. In acetone‐d6 and DMSO‐d6, the influence of substituents on chemical shifts is similar and the most regular. It allowed a fair correlation of chemical shifts of para‐substituted dibenzoylmethane derivatives' characteristic protons with Hammett substituent constants in these solvents. In CDCl3, characteristic protons' chemical shifts were near 1H NMR spectroscopy measurement error limits, and, therefore, correlation with Hammett substituent constants in this solvent was unsatisfactory. In benzene, although the changes of chemical shifts are the most evident, the changes are also the most irregular, and, therefore, correlation in this solvent failed completely. Results of meta‐substituted derivatives were much more irregular, and their correlation with Hammett substituent constants was poor in all investigated solvents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
We use quantum theory of atoms in molecules (QTAIM) and the stress tensor topological approaches to explain the effects of the torsion φ of the C‐C bond linking the two phenyl rings of the biphenyl molecule on a bond‐by‐bond basis using both a scalar and vector‐based analysis. Using the total local energy density H( r b), we show the favorable conditions for the formation of the controversial H–H bonding interactions for a planar biphenyl geometry. This bond‐by‐bond QTAIM analysis is found to be agreement with an earlier alternative QTAIM atom‐by‐atom approach that indicated that the H–H bonding interaction provided a locally stabilizing effect that is overwhelmed by the destabilizing role of the C‐C bond. This leads to a global destabilization of the planar biphenyl conformation compared with the twisted global minimum. In addition, the H( r b) analysis showed that only the central torsional C‐C bond indicated a minimum for a torsion φ value coinciding with that of the conventional global energy minimum. The H–H bonding interactions are found to be topologically unstable for any torsion of the central C‐C bond away from the planar biphenyl geometry. Conversely, we demonstrate that for 0.0° < φ < 39.95° there is a resultant increase in the topological stability of the C nuclei comprising the central torsional C‐C bond. Evidence is found of the effect of the H–H bonding interactions on the torsion φ of the central C‐C bond of the biphenyl molecule in the form of the QTAIM response β of the total electronic charge density ρ( r b). Using a vector‐based treatment of QTAIM we confirm the presence of the sharing of chemical character between adjacent bonds. In addition, we present a QTAIM interpretation of hyperconjugation and conjugation effects, the former was quantified as larger in agreement with molecular orbital (MO) theory. The stress tensor and the QTAIM H atomic basin path set areas are independently found to be new tools relevant for the incommensurate gas to solid phase transition occurring in biphenyl for a value of the torsion reaction coordinate φ ≈ 5°. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Ming FANG  Ming  Zhe LI  Yao FU 《中国化学》2008,26(6):1122-1128
Six density function theory methods (B3LYP, B3P86, MPWB1K1, MPWPW91, PBEPBE, TPSS1KCIS3) were used to calculate bond dissociation enthalpies of nitro compounds, where the B3P86 method was found to give the most accurate predictions. Using the B3P86 method meta‐ and para‐substituted nitroaromatics were systematically studied for the first time. The remote substituent effects, Hammett relationships, and the origin of the substituent effects were discussed on the basis of the calculated results. Both meta‐ and para‐substituted nitromethyl‐benzenes showed significant substituent effects and a fair correlation against substituent constants σp+ The ground state effects were found to play the major role in determining the overall substituent effects. Meanwhile, nitroamino‐ benzenes showed irregular substituent effects and a poorer Hammett correlation, where both ground and radical state effects contributed to the overall substituent effects.  相似文献   

6.
In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311 + +g(2df,2p)//UB3LYP/6-31 +g(d) level. It was found that the substituents exerted similar effects on the X-H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ^+) of 2- and 6-Y-CIoHsX-H (X=NH and O only) varied violently. The origin of the substituent effects on the X-H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net. substituent effects.  相似文献   

7.
Proton and boron-11 magnetic resonance spectra for several potassium para-substituted tetraarylborate compounds [KB(C6H4-pX)4, where X is H, OCH3, CH3, Br, Cl, F, CF3] have been obtained. The chemical shift between the centers of the AA′ and XX′ multiplets for the ring proton multiplets, relative to a reference chemical shift of 0·39 ppm for potassium tetraphenylborate, correlated with the corresponding Hammett σ values for the para-substituent. Additionally, the boron-11 chemical shifts gave a good correlation with corresponding σ values for the substituents. Electronegativities of para-substituted phenyl rings were calculated and found to be approximately 2·70 for all compounds studied. It was shown that electronic substituent effects do not greatly influence the electron density surrounding the central boron atom in the tetraarylborate ions.  相似文献   

8.
The quasi‐aromatic metal complex (1,1,2,8,9,9‐hexamethyl‐4,6‐dioxa‐5‐hydro‐3,7,10,14‐tetraazacyclotetradecane‐2,7,10,12‐tetraene)copper(II), [Cu(PnAO)‐6H]0 (AH), was synthesized. Reactions of AH were studied spectrophotometrically in acidic media (pH = 1 ∼ 2, EtOH:H2O = 1:4 v/v) with para‐substituted benzaldehydes (ald). The Cu,2N,3C quasi‐aromatic heterocyclic ring in AH is highly reactive at the central‐aromatic‐carbon atom, C12, to most aldehydes. A novel parallel, competitive and consecutive second‐order reaction mechanism is proposed. To obtain the rate constants following this mechanism, the Gauss‐Newton‐Marquardt and Runge‐Kutta methods were employed. Consistent results were obtained. Effects of acidity, solvent, temperature and substituent R (RH, CH3, OCH3, Cl) of the aromatic aldehydes on the reaction rate constants were studied. The results support the proposed SN2 mechanism. A linear free energy relationship between the rate constant k1 and the Hammett parameters for the substituted benzaldehydes as well the activation parameters are presented. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 33: 1–8, 2001  相似文献   

9.
The mass spectra of a series of ortho, meta and para substituted isopropyl benzene derivatives have been determined where the second substituent is ? COOH, ? C(O)NH2, ? C(O)C6H5, ? C(Ph)(=NPh) or ? CH(Ph)(NHPh). Two bis-isopropylbenzophenones have also been studied. The spectra are characterized by prominent ortho effects which distinguish the ortho derivatives from the meta and para.  相似文献   

10.
The mass spectra were investigate of six 3-aryl-2-isoxazolines, and three main fragmentation pathways were found to occur through loss of 28 and 30 a.m.u. The losses of 28 (C2H4)and 30 (CH2O) are seen as competitive mass spectrometric retro-1,3-dipolar cycloaddition processes. These reactions are also repeated successively, and take place in different ions either following the degradation of the substituent or the attack of the benzene ring. The substituents in the para position influence both these reactions and also the attack upon the rings. A quantitative study has been carried out on the effect of the substituent on the [M-28] reaction, which can be interpreted in terms of the first ionisation energies. These terms are linearly intercorrelated, for the compounds under examination, with the Hammett type σ-constants.  相似文献   

11.
The kinetics and regioselectivity of methoxydebromination of some substituted pentabromobenzenes C6Br5X (X = NO2, CN, NH2, MeNH, and MeO) were studied in pyridine at 115°C. The partial rate factors (k f) were calculated for different positions of the polybrominated ring in these compounds. The effect of substituents X on methoxydebromination at themeta- andpara-positions is satisfactorily described only by the Hammett substituent constants ( = 2.22,r = 0.96). This allows one to conclude that direct polar conjugation of the substituents contributes only slightly to the transition state of the reaction. Theorthobromine atoms have a significant steric effect.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1784–1788, September, 1995.  相似文献   

12.
The semiempirical PM3 method is used to calculate the potential functions of internal rotation of the functional groups –SO2Cl, –NO2, –CH3, –OCH3, and –NH2 of benzenesulfonyl halide molecules (PhSO2Hal, Hal = F, Cl, Br, I) and twelve substituted derivatives of benzenesulfonyl chloride. Molecular conformations have been determined and internal rotation barriers of the functional groups have been calculated. For meta- and para-substituted benzenesulfonyl chlorides, the projection of the S–Hal bond is perpendicular to the plane of the benzene ring. The rotation barriers of the –SO2Hal group of benzenesulfonyl halides increase in the series Hal = F, Cl, Br, I. The rotation barriers of the –SO2Cl group of benzenesulfonyl chloride with meta- and para-substituents slightly increase with the electron-donor properties of the substituent. The rotation barriers of the functional groups of ortho-substituted benzenesulfonyl chlorides are 3 or 4 times as high as those of the meta- and para-isomers. For para-substituted benzenesulfonyl chlorides, the rotation barriers of the functional groups increase in the order –CH3, –NO2, –SO2Cl, –OCH3, –NH2.  相似文献   

13.
The competition between benzylic cleavage (simple bond fission [SBF]) and retro‐ene rearrangement (RER) from ionised ortho, meta and para RC6H4OH and RC6H4OCH3 (R = n‐C3H7, n‐C4H9, n‐C5H11, n‐C7H15, n‐C9H19, n‐C15H31) is examined. It is observed that the SBF/RER ratio is significantly influenced by the position of the substituent on the aromatic ring. As a rule, phenols and anisoles substituted by an alkyl group in meta position lead to more abundant methylene‐2,4‐cyclohexadiene cations (RER fragmentation) than their ortho and para homologues. This ‘meta effect’ is explained on the basis of energetic and kinetic of the two reaction channels. Quantum chemistry computations have been used to provide estimate of the thermochemistry associated with these two fragmentation routes. G3B3 calculation shows that a hydroxy or a methoxy group in the meta position destabilises the SBF and stabilises the RER product ions. Modelling of the SBF/RER intensities ratio has been performed assuming two single reaction rates for both fragmentation processes and computing them within the statistical RRKM formalism in the case of ortho, meta and para butyl phenols. It is clearly demonstrated that, combining thermochemistry and kinetics, the inequality (SBF/RER)meta < (SBF/RER)ortho < (SBF/RER)para holds for the butyl phenols series. It is expected that the ‘meta effect’ described in this study enables unequivocal identification of meta isomers from ortho and para isomers not only of alkyl phenols and alkyl anisoles but also in other alkyl benzene series. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
《中国化学会会志》2017,64(5):522-530
In this study, we report the substituent effect on the structures, frontier orbital analysis, and spectroscopic properties (IR , 13C , 29Si NMR ) in the molybdenum silylidyne complexes CpMo (CO )2(≡Si‐para ‐C6H4X ) (X = H, F, Cl, CN , NO2 , Me, OMe , NH2 , NHMe ) using MPW1PW91 quantum chemical calculations. The calculated structural parameters and spectral parameters are compatible with the experimental values in similar complexes. The nature of the chemical bond between the [Cp(OC ) 2Mo ] and [Si‐para ‐C6H4X ]+ fragments was explored with energy decomposition analysis (EDA ). The percentage composition in terms of the defined groups of frontier orbitals for CpMo (CO )2(≡Si‐para ‐C6H4X ) complexes was investigated to explore the character of the metal–ligand bonds. The linear correlations between the properties and Hammett constants (σ p) were illustrated. Natural bond orbital analysis (NBO ) was used to illustrate the electronic structure of the complexes.  相似文献   

15.
The synthesis of ten novel mesoionic 4‐[para‐substituted (H, CH3, OCH3, NO2, Cl, Br, OH, t‐C4H9, C6H5, C4H9) phenyl‐5‐2,4‐dichlorophenyl]‐1,3‐4‐thiadiazolium‐2‐aminides, as hydrochlorides, are described. The synthesis strategy utilized the corresponding para‐substituted isothiocyanates as starting materials to obtain the thiosemicarbazides through reaction with phenylhydrazine (61–98%), which were then submitted to acylation with 2,4‐dichloro benzoyl chloride and direct cyclization to generate the desired substituted mesoionic compounds in good yields (ca. 80%).  相似文献   

16.
17O NMR spectra for 35 ortho‐, para‐, and meta‐substituted phenyl tosylates (phenyl 4‐methylbenzenesulfonates), 4‐CH3‐C6H4SO2OC6H4‐X, at natural abundance in acetonitrile at 50 °C were recorded. The 17O NMR chemical shifts, δ(17O), of the sulfonyl (SO2) and the single‐bonded phenoxy (OPh) oxygens for para and meta derivatives correlated well with dual substituent parameter treatment using the Taft inductive, σI, and resonance, σºR, constants. The influence of ortho substituents on the sulfonyl oxygen and the single‐bonded phenoxy oxygen chemical shifts, δ(17O), was found to be nicely described by the Charton equation: δ(17O)ortho = δ(17O)H + ρIσI + ρRσ°R + δEsB when the data treatment was performed separately for electron‐donating +R substituents and electron‐attracting ?R substituents. Electron‐attracting meta and para substituents in the phenyl moiety caused deshielding while the electron‐donating meta, para and ortho +R substituents produce shielding effects on the sulfonyl (SO2) and single‐bonded phenoxy (OPh) oxygens. The influence of ortho inductive and resonance effects in the case of +R substituents was found to be approximately twice higher than the corresponding influence from the para position. Due to the steric effect of ortho substituents a decrease in shielding of the oxygens at the sulfonyl group (δEsB > 0, EsB < 0) was detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We have determined the crystal structures of 2,2′‐(4‐fluoro­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C23H27FO4, (I), 2,2′‐(4‐chloro­phenyl)­methyl­enebis(3‐hy­droxy‐5,5‐dimethyl‐2‐cyclo­hexen‐1‐one), C23H27ClO4, (II), 2,2′‐(4‐hydroxy­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C23H28O5, (III), 2,2′‐(4‐methyl­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C24H30O4, (IV), 2,2′‐(4‐methoxy­phenyl)­methyl­enebis(3‐hy­droxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C24H30O5, (V), and 2,2′‐(4‐N,N′‐di­methyl­amino­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C25H33NO4, (VI). Structures (III) to (VI) of these bis‐dimedone derivatives show nearly the same packing pattern irrespective of the different substituent in the para position of the aromatic ring. However, (II) does not fit into this scheme, although the Cl atom is a substituent not too different from the others. The different packing of the fluoro compound, (I), can be explained by the fact that it crystallizes with two mol­ecules in the asymmetric unit, which show a different conformation of the dimedone ring. On the other hand, (I) shows a similar packing pattern to bis(2‐hydroxy‐4,4‐di­methyl‐6‐oxo‐1‐cyclo­hexenyl)­phenyl­methane, a compound containing an aromatic ring without any substituent and with Z′ = 2.  相似文献   

18.
The intermolecular interactions existing at three different sites between phenylacetylene and LiX (X = OH, NH2, F, Cl, Br, CN, NC) have been investigated by means of second‐order Møller?Plesset perturbation theory (MP2) calculations and quantum theory of “atoms in molecules” (QTAIM) studies. At each site, the lithium‐bonding interactions with electron‐withdrawing groups (? F, ? Cl, ? Br, ? CN, ? NC) were found to be stronger than those with electron‐donating groups (? OH and ? NH2). Molecular graphs of C6H5C?CH···LiF and πC6H5C?CH···LiF show the same connectional positions, and the electron densities at the lithium bond critical points (BCPs) of the πC6H5C?CH···LiF complexes are distinctly higher than those of the σC6H5C?CH···LiF complexes, indicating that the intermolecular interactions in the C6H5C?CH···LiX complexes can be mainly attributed to the π‐type interaction. QTAIM studies have shown that these lithium‐bond interactions display the characteristics of “closed‐shell” noncovalent interactions, and the molecular formation density difference indicates that electron transfer plays an important role in the formation of the lithium bond. For each site, linear relationships have been found between the topological properties at the BCP (the electron density ρb, its Laplacian ?2ρb, and the eigenvalue λ3 of the Hessian matrix) and the lithium bond length d(Li‐bond). The shorter the lithium bond length d(Li‐bond), the larger ρb, and the stronger the π···Li bond. The shorter d(Li‐bond), the larger ?2ρb, and the greater the electrostatic character of the π···Li bond. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
In aqueous dioxane containing triethylamine the title 3‐chloroformazans 1 are converted into the corresponding 1,4‐bis(arylazo)‐3,6‐diaryl‐1,2,4,5‐tetrazines 3 via head‐to‐tail dimerization of the intitially formed 1,3‐dipolar ions 2. The kinetics of triethylamine‐catalyzed dehydrochlorination of 1 in 70% dioxane at 27°C and ionic strength of 0.1 were studied. The rate data were linearly correlated with enhanced Hammett substituent constants σx? and an overall ρ value of 0.2 was determined for the variation of the N‐aryl substituent. These results were interpreted in terms of a two‐step mechanism. Also, the mechanisms of the unimolecular fragmentation of 1 and 3 in the mass spectrometer are discussed.  相似文献   

20.
Density Functional Theory studies of square-planar PtII pincer structures, (4-Z-NCN)PtCl ([4-Z-NCN]=[4-Z-2,6-(Me2NCH2)2C6H2-N,C,N], Z=H, NO2, CF3, CO2H, CHO, Cl, Br, I, F, SMe, SiMe3, tBu, OH, NH2, NMe2), enable characterisation of mesomerism for the pincer-Pt interaction. Relationships between Hammett σp substituent parameters of Z and DFT data obtained from NBO6 and AOMix computation are used to probe the interaction of the 5dyz orbital of platinum with π-orbitals of the arene ring. Analogous computation for 2,6-(Me2CH2)2C6H3Z (Z=H, CF3, CHO, Cl, Br, I, F, SMe, SiMe3, tBu, OH, NH2) and (4-H-NCN)PtZ allows an estimation of the relative substituent effects of “(CH2NMe2)2PtZ” on π-delocalisation in the pincer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号