首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
The enzymatically degradable poly(N‐isopropylacrylamide‐co‐acrylic acid) hydrogels were prepared using 4,4‐bis(methacryloylamino)azobenzene (BMAAB) as the crosslinker. It was found that the incorporated N‐isopropylacrylamide (NIPAAm) monomer did not change the enzymatic degradation of hydrogel, but remarkably enhanced the loading of protein drug. The hydrogels exhibited a phase transition temperature between 4°C (refrigerator temperature) and 37°C (human body temperature). Bovine serum albumin (BSA) as a model drug was loaded into the hydrogels by soaking the gels in a pH 7.4 buffer solution at 4°C, where the hydrogel was in a swollen status. The high swelling of hydrogels at 4°C enhanced the loading of BSA (loading capability, ca. 144.5 mg BSA/g gel). The drug was released gradually in the pH 7.4 buffer solution at 37°C, where the hydrogel was in a shrunken state. In contrast, the enzymatic degradation of hydrogels resulted in complete release of BSA in pH 7.4 buffer solution containing the cecal suspension at 37°C (cumulative release: ca. 100 mg BSA/g gel after 4 days). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Simultaneous drug release and monitoring using a single polymeric platform represents a significant advance in the utilization of biomaterials for therapeutic use. Tracking drug release by real‐time electrochemical detection using the same platform is a simple way to guide the dosage of the drug, improve the desired therapeutic effect, and reduce the adverse side effects. The platform developed in this work takes advantage of the flexibility and loading capacity of hydrogels, the mechanical strength of microfibers, and the capacity of conducting polymers to detect the redox properties of drugs. The engineered platform is prepared by assembling two spin‐coated layers of poly‐γ‐glutamic acid hydrogel, loaded with poly(3,4‐ethylenedioxythiophene) (PEDOT) microparticles, and separated by a electrospun layer of poly‐ε‐caprolactone microfibers. Loaded PEDOT microparticles are used as reaction nuclei for the polymerization of poly(hydroxymethyl‐3,4‐ethylenedioxythiophene) (PHMeDOT), that semi‐interpenetrate the whole three layered system while forming a dense network of electrical conduction paths. After demonstrating its properties, the platform is loaded with levofloxacin and its release monitored externally by UV–vis spectroscopy and in situ by using the PHMeDOT network. In situ real‐time electrochemical monitoring of the drug release from the engineered platform holds great promise for the development of multi‐functional devices for advanced biomedical applications.  相似文献   

3.
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli‐responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli‐responsive supramolecular complexes and stimuli‐responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli‐responsive biomolecule‐based hydrogels are discussed. The assembly of stimuli‐responsive biomolecule‐based hydrogel films on surfaces and their applications are discussed. The coating of drug‐loaded nanoparticles with stimuli‐responsive hydrogels for controlled drug release is also presented.  相似文献   

4.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A new type of glucose‐responsive hydrogel with rapid response to blood glucose concentration change at physiological temperature has been successfully developed. The polymeric hydrogel contains phenylboronic acid (PBA) groups as glucose sensors and thermo‐responsive poly (N‐isopropylacrylamide) (PNIPAM) groups as actuators. The response rate of the hydrogel to environmental glucose concentration change was significantly enhanced by introducing grafted poly(N‐isopropylacrylamide‐co‐3‐acrylamidophenylboronic acid) [poly(NIPAM‐co‐AAPBA)] side chains onto crosslinked poly(NIPAM‐co‐AAPBA) networks for the first time. The synthesized comb‐type grafted poly(NIPAM‐co‐AAPBA) hydrogels showed satisfactory equilibrium glucose‐responsive properties, and exhibited much faster response rate to glucose concentration change than normal type crosslinked poly(NIPAM‐co‐AAPBA) hydrogels at physiological temperature. Such glucose‐responsive hydrogels with rapid response rate are highly attractive in the fields of developing glucose‐responsive sensors and self‐regulated drug delivery systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Emphasizing the role of hydrogel stiffness and cellular differentiation, this study develops collagen and elastin‐like polypeptide (ELP)–based bone regenerative hydrogels loaded with recombinant human bone morphogenetic protein‐2 (rhBMP‐2) and doxycycline with mechanical properties suitable for osteogenesis. The drug‐incorporated collagen–ELP hydrogels has significantly higher modulus of 35 ± 5 kPa compared to collagen‐only hydrogels. Doxycycline shows a bi‐phasic release with an initial burst release followed by a gradual release, while rhBMP‐2 exhibits a nearly linear release profile for all hydrogels. The released doxycycline shows anti‐microbial activity against Pseudomonas aeruginosa, Streptococcus sanguinis, and Escherichia coli. Microscopic observation of the hydrogels reveals their interconnected, macroporous, 3D open architecture with pore diameters between 160 and 400 µm. This architecture supports human adipose–derived stem cell attachment and proliferation from initial days of cell seeding, forming a thick cellular sheath by day 21. Interestingly, in collagen and collagen–ELP hydrogels, cell morphology is elongated with stretched slender lamellipodial formation, while cells assemble as spheroidal aggregates in crosslinked as well as drug‐loaded hydrogels. Osteogenic markers, alkaline phosphatase and osteocalcin, are expressed maximally for drug‐loaded hydrogels compared to those without drugs. The drug‐loaded collagen–ELP hydrogels are thus promising for combating bacterial infection and promoting guided bone regeneration.  相似文献   

7.
A pyrene‐containing phenylboronic acid (PBA) functionalized low‐molecular‐weight hydrogelator was synthesized with the aim to develop glucose‐sensitive insulin release. The gelator showed the solvent imbibing ability in aqueous buffer solutions of pH values, ranging from 8–12, whereas the sodium salt of the gelator formed a hydrogel at physiological pH 7.4 with a minimum gelation concentration (MGC) of 5 mg mL?1. The aggregation behavior of this thermoreversible hydrogel was studied by using microscopic and spectroscopic techniques, including transmission electron microscopy, FTIR, UV/Vis, luminescence, and CD spectroscopy. These investigations revealed that hydrogen bonding, π–π stacking, and van der Waals interactions are the key factors for the self‐assembled gelation. The diol‐sensitive PBA part and the pyrene unit in the gelator were judiciously used in fluorimetric sensing of minute amounts of glucose at physiological pH. The morphological change of the gel due to addition of glucose was investigated by scanning electron microscopy, which denoted the glucose‐responsive swelling of the hydrogel. A rheological study indicated the loss of the rigidity of the native gel in the presence of glucose. Hence, the glucose‐induced swelling of the hydrogel was exploited in the controlled release of insulin from the hydrogel. The insulin‐loaded hydrogel showed thixotropic self‐recovery property, which hoisted it as an injectable soft composite. Encouragingly, the gelator was found to be compatible with HeLa cells.  相似文献   

8.
We present herein the preparation of four different hydrogels based on the pseudopeptide gelator Fmoc‐l ‐Phe‐d ‐Oxd‐OH (Fmoc=fluorenylmethyloxycarbonyl), either by changing the gelator concentration or adding graphene oxide (GO) to the water solution. The hydrogels have been analysed by rheological studies that demonstrated that pure hydrogels are slightly stronger compared to GO‐loaded hydrogels. Then the hydrogels efficiency to trap the cationic methylene blue (MB) and anionic eosin Y (EY) dyes has been analyzed. MB is efficiently trapped by both the pure hydrogel and the GO‐loaded hydrogel through π–π interactions and electrostatic interactions. In contrast, the removal of the anionic EY is achieved in less satisfactory yields, due to the unfavourable electrostatic interactions between the dye, the gelator and GO.  相似文献   

9.
Poly(N‐vinyl‐pyrrolidone) (PVP) hydrogel has been considered as a very interesting and promising thermosensitive material. The most vital shortcoming of PVP hydrogel as thermosensitive material is that it does not exhibit thermosensitivity under usual conditions. In this work, semi‐interpenetrating polymer network (semi‐IPN) hydrogels based on PVP and carboxymethylcellulose (CMC) were prepared. The volume phase transition temperature (VPTT) of the hydrogels was determined by swelling behavior and differential scanning calorimetry (DSC). The results showed that the VPTT was significantly dependent on CMC content and the pH of the swelling medium. The amount of CMC in the semi‐IPN hydrogels was 0.050, 0.075, and 0.100 g, the VPTT in buffer solution of pH 1.2 was 29.9 °C, 27.5 °C and 24.5 °C, respectively. In addition, the VPTT occurred in buffer solution of pH 1.2, but did not appear in alkaline medium. Bovine serum albumin (BSA) as a model drug was loaded and the in vitro release studies were carried out in different buffer solutions and at different temperatures. The results of this study suggest that PVP/CMC semi‐IPN hydrogels could serve as potential candidates for protein drug delivery in the intestine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1749–1756, 2010  相似文献   

10.
Effective delivery of therapeutic proteins is important for many biomedical applications. Yet, the stabilization of proteins during delivery and long‐term storage remains a significant challenge. Herein, a trehalose‐based hydrogel is reported that stabilizes insulin to elevated temperatures prior to glucose‐triggered release. The hydrogel is synthesized using a polymer with trehalose side chains and a phenylboronic acid end‐functionalized 8‐arm poly(ethylene glycol) (PEG). The hydroxyls of the trehalose side chains form boronate ester linkages with the PEG boronic acid cross‐linker to yield hydrogels without any further modification of the original trehalose polymer. Dissolution of the hydrogel is triggered upon addition of glucose as a stronger binder to boronic acid (Kb = 2.57 vs 0.48 m −1 for trehalose), allowing the insulin that is entrapped during gelation to be released in a glucose‐responsive manner. Moreover, the trehalose hydrogel stabilizes the insulin as determined by immunobinding after heating up to 90 °C. After 30 min heating, 74% of insulin is detected by enzyme‐linked immunosorbent assay in the presence of the trehalose hydrogel, whereas only 2% is detected without any additives.  相似文献   

11.
The drug delivery performances of pH‐responsive magnetic hydrogels (MHs) composed of tragacanth gum (TG), poly(acrylic acid) (PAA), and Fe3O4 nanoparticles (NPs) were investigated in terms of physicochemical as well as biological features. The fabricated drug delivery systems (DDSs) were analyzed using Fourier transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometer, scanning electron microscopy, and transmission electron microscopy. The synthesized MHs were loaded with doxorubicin hydrochloride (Dox) as a universal model anti‐cancer drug. The MHs showed excellent Dox loading and encapsulation efficiencies, mainly due to strong hydrogen bonding and electrostatic interaction between the drug and polymeric matrix, as well as porous micro‐structures of the fabricated MHs. The drug‐loaded MHs showed negligible drug release values in physiological condition. In contrast, in cancerous condition (pH 5.0), both MHs exhibited highest drug release values that qualified them as “smart” DDSs. The cytocompatibilities of the MHs as well as the cytotoxicity of the Dox‐loaded MHs were investigated against human epidermoid‐like carcinoma (Hela) cells through MTT assay. In addition, hyperthermia therapy induced by Fe3O4 NPs was applied to locally raise temperature inside the Hela cells at 45 ± 3°C to promote cell death. As a result, the Dox‐loaded MHs can be considered as potential DDSs for chemo/hyperthermia therapy of solid tumors.  相似文献   

12.
In this study, we immobilized enzymes by combining covalent surface immobilization and hydrogel entrapment. A model enzyme, glucose oxidase (GOX), was first covalently immobilized on the surface of silica nanoparticles (SNPs) via 3‐aminopropyltriethoxysilane (APTES), and the resultant SNP‐immobilized enzyme was physically entrapped within photopolymerized hydrogels prepared from two different molecular weights (MWs) (575 and 8000 Da) of poly(ethylene glycol)(PEG). The hydrogel entrapment resulted in a decrease in reaction rate and an increase in apparent Km of SNP‐immobilized GOX, but these negative effects could be minimized by using hydrogel with a higher MW PEG, which provides higher water content and larger mesh size. The catalytic rate of the PEG 8000 hydrogel was about ten times faster than that of the PEG 575 hydrogel because of enhanced mass transfer. Long‐term stability test demonstrated that SNP‐immobilized GOX entrapped within hydrogel maintained more than 60% of its initial activity after a week, whereas non‐entrapped SNP‐immobilized GOX and entrapped GOX without SNP immobilization maintained less than 20% of their initial activity. Incorporation of SNPs into hydrogel enhanced the mechanical strength of the hydrogel six‐fold relative to bare hydrogels. Finally, a hydrogel microarray entrapping SNP‐immobilized GOX was fabricated using photolithography and successfully used for quantitative glucose detection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Photocrosslinked hyaluronic acid/poly(vinyl alcohol)‐styrylpyridinium (HA/PVA‐SbQ) hydrogels were synthesized for controlled antitumor drug delivery. The photocrosslinking reaction was rapid, and the time required for completely converting into the insoluble hydrogels was less than 500 s on exposure to 5 mW/cm2 UV light irradiation. The resulting hydrogels exhibited sensitivity to the pH value of the surrounding environment. Scanning electron microscopic analysis revealed that the morphology and the pore size of the hydrogels could be controlled by changing the ratio of HA and PVA‐SbQ in the formulations. Paclitaxel (PTX)‐loaded hydrogel could also be formed rapidly by UV irradiation of a mixed solution of HA/PVA‐SbQ and PTX. Release profiles of PTX from the hydrogels showed pH‐dependent and sustained manner. Moreover, our data revealed that PTX released from the HA hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of HA hydrogels without PTX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using HA‐based hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The present study deals with preparation and optimization of a novel chitosan hydrogel‐based matrix by suspension cross‐linking method for controlled release of Depo‐Medrol. The controlled release of Depo‐Medrol for effective Rheumatoid arthritis disease has become an imperative field in the drug delivery system. In this context, it was intended to optimize loading circumstances by experimental design and also study the release kinetics of Depo‐Medrol entrapped in the chitosan matrix in order to obtain maximal efficiency for drug loading. The optimum concentrations of chitosan (2.5 g), glutaraldehyde (3.05 μL) and Depo‐Medrol (0.1 mg) were set up to achieve the highest value of drug loaded and the most sustained release from the chitosan matrix. In vitro monitoring of drug release kinetic using high‐performance liquid chromatography showed that 73% of the Depo‐Medrol was released within 120 min, whereas remained drug was released during the next 67 h. High correlation between first‐order and Higuchi's kinetic models indicates a controlled diffusion of Depo‐Medrol through the surrounding media. Moreover, recovery capacity >82% and entrapment efficiency of 58–88% were achieved under optimal conditions. Therefore, the new synthesized Depo Medrol–chitosan is an applicable appliance for arthritis therapy by slow release mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A facile synthetic strategy was developed for the preparation of thermoresponsive nanocomposite hydrogels comprising crosslinked chitosan (CS) networks and poly(N‐isopropylacrylamide) [p(NIPAAm)] nanogels. First, thermoresponsive p(NIPAAm) nanogels were synthesized via emulsion polymerization. The p(NIPAAm) nanogels were introduced into methacrylamide CS (MC) solution and the free‐radical initiated crosslinking reaction of MC produced nanogel‐embedded hydrogels. The last step involves the loading of the antibacterial model drug levofloxacin (LFX) into the prepared nanocomposite hydrogels by allowing the preformed hydrogels to swell to equilibrium in the drug's aqueous solution. The integration of p(NIPAAm) nanogel into CS networks facilitates thermoresponsive release of LFX with an enhancement of the drug‐loading capacity within the hydrogel. Notably, thermoresponsive drug‐release was achieved without unwarranted modification of the hydrogel's dimension and shape, although an increase in temperature caused the collapse of the p(NIPAAm) nanogels. The thermoresponsive property of the investigated nanocomposite hydrogel is beneficial and may offer broad opportunities for drug temperature‐triggered release for clinical applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1907–1914  相似文献   

16.
In this work, a dually sensitive colloidal crystal (CC)‐loaded hydrogel has been synthesized via frontal polymerization (FP) in a facile and rapid way. First, a polystyrene CC film was fabricated by vertical deposition on the inner wall of a test tube. Then, a mixture of acrylic acid (AAc), 2‐hydroxyethyl methacrylate (HEMA), and glycerol along with the initiator and crosslinker was added to this test tube to carry out FP, resulting in the formation of CC‐loaded hydrogel. The influence of the mass ratios of HEMA/AAc on front velocity and temperatures were studied. The swelling behavior, the morphology, and the stimuli‐responsive behavior of the CC‐loaded hydrogels prepared via FP were thoroughly investigated on the basis of swelling measurement, scanning electron microscopy, and reflection spectra. Results show that the as‐prepared CC‐loaded hydrogels exhibit excellent dual sensitivity to both methanol concentrations and pH values with very short response time, which can be observed visually without the aid of instruments. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
In this study, biodegradable and antibacterial poly(azomethine‐urethane) (PAMU)‐ and chitosan (CS)‐based hydrogels have been prepared for controlled drug delivery applications. Structural and morphological characterizations of the hydrogels were performed via Fourier transform‐infrared and scanning electron microscopy analyses. Thermal stability, hydrophilicity, swelling, mechanical, biodegradation, protein absorption properties, and drug delivery application of PAMU‐ and CS‐based hydrogels were also investigated. The swelling performance of the hydrogels was studied in acidic, neutral, and alkaline media. Swelling results showed that the hydrogels have higher swelling capacity in acidic and alkaline media than neutral medium. Biodegradation experiments of the hydrogels were also studied via hydrolytic and enzymatic experiments. The drug release property of the hydrogel was carried out using 5‐fluoro uracil (5‐FU), and 5‐FU release capacity of the hydrogels was found in the range from 40.10% to 58.40% after 3 days.  相似文献   

18.
In this article, the synthesis and characterization of novel hydrogel systems designed for colon‐targeting drug delivery are reported. The gels were composed of konjac glucomannan, copolymerized with acrylic acid, and crosslinked by the aromatic azo agent bis(methacryloylamino)‐azobenzene. The influence of various parameters on the dynamic and equilibrium swelling ratios (SRs) of the hydrogels was investigated. It is shown that the SR was inversely proportional to the grafting degree of acrylic acid and the content of bis(methacryloylamino)‐azobenzene. The dependence of SR on the pH indicates that obtained hydrogels are potential for drug delivery to colon. It was possible to modulate the degree of swelling and the pH sensitivity of the gels by changing crosslinking density of the polymer. The main chain of hydrogels can be degraded by β‐glycosidase which is abundant in colon. They can be in vitro degraded for 73% in a month by Cereflo® and 86% in 20 days by Mannaway25L. We have also prepared the hydrogels that loaded with bovine serum albumin about 1.5%, 3%, 9%, and 20% by weight. In vitro release of model drug bovine serum albumin was studied in the presence of Mannaway25L or Fungamyl®800L in pH 7.4 phosphate buffer at 37 °C. The drug release can be controlled by the biodegradation of the hydrogels. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4370–4378, 2004  相似文献   

19.

In the present work a self‐regulated insulin delivery system based on the hydrogel poly(2‐hydroxyethyl methacrylate‐co‐N,N‐dimethylaminoethyl methacrylate) with entrapped glucose oxidase, catalase and insulin was developed and evaluated both by in vitro and in vivo studies. The hydrogels were characterized by FTIR, DSC, SEM and elemental analysis. The swelling studies were carried out in different pH and glucose solutions. The mesh size of the hydrogels and diffusion coefficient of water and insulin in different glucose solution was calculated. The effect of the crosslinking agent (ethylene glycol dimethacrylate) concentration (0–2% w/w) on swelling and insulin release was studied. The equilibrium swelling and insulin release was found to depend on the external glucose concentration and dimethylaminoethyl methacrylate content of the hydrogels. The in vivo studies indicated that the entrapped insulin was stable and was effective in reducing the blood glucose of streptozotocin induced diabetic rats. The histopathological studies revealed that there was no fibrous tissue encapsulation after 56 days of implantation.  相似文献   

20.
《Soft Materials》2013,11(3):393-408
The goal of this research is to develop a composite hydrogel system for sustained release of therapeutic agents. The hydrogel composites were prepared by embedding drug‐loaded, biodegradable poly (DL‐lactide‐co‐glycolide) (PLGA) microparticles in semicrystalline hydrogels of polyvinyl alcohol (PVA). The gels were physically cross‐linked by the formation of the crystallites. The presence of the crystallites and the composite nature of the structure were confirmed by using differential scanning calorimetry and ATR‐FTIR spectroscopy. The distribution of microparticles in the hydrogel matrix was evaluated by using confocal laser scanning microscopy with coumarin‐6 as a fluorescence marker. The numbers of particles in the hydrogel matrix increased along the scanning depth, indicating uneven distribution. The release behavior of a model therapeutic agent, hydrocortisone, was evaluated, and the hydrogel composite system provided for better control of release than the microparticles and hydrogels alone. The addition of outer layers of PVA to the original single‐layer composite further reduced the initial burst effect from the microparticles and allowed for a linear release profile for greater than 1 month.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号