首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity.  相似文献   

2.
In this study, N-hydroxyphthalimide (NHPI) was successfully attached on functionalized SiO2-coated Fe3O4 nanoparticles through amid bond. The sustained nanomagnetite-immobilized NHPI as a new magnetically recoverable catalyst was characterized by FT-IR, XRD, TGA, VSM, TEM and SEM techniques. The prepared catalyst exhibited high selectivity for oxidation of various benzyl alcohols and hydrocarbons in the presence of hydrogen peroxide as oxidant. The catalyst can be readily separated from the reaction mixture using an external magnet and reused several times without significant loss of its catalytic activity.  相似文献   

3.
The catalytic activity of [bmim]5[PW11ZnO39]·3H2O as a hybrid catalyst was studied in the oxidation of various alkenes in acetonitrile, using hydrogen peroxide as oxygen source. The effect of reaction parameters such as type of solvent and oxidant, amount of catalyst and oxidant, and temperature was also investigated. From our results, [bmim]5[PW11ZnO39]·3H2O hybrid catalyst gave higher yields and selectivity in the oxidation of alkenes and was reused four times without loss of its catalytic activity.  相似文献   

4.
苏浩  杨春 《应用化学》2014,31(8):958-964
以Keggin结构的几类杂多酸和三乙胺(TEA)为原料,通过简单的酸碱反应合成了相应杂多酸的TEA盐。 并以它们作为催化剂,30%H2O2作氧化剂,在不使用长链相转移剂的条件下,研究了它们催化苯甲醇选择氧化制备苯甲醛的反应性能。 结果表明,该类催化剂在苯甲醇的选择氧化反应中具有比相应杂多酸更高的催化活性或选择性。 其中[TEAH]H2PW12O40为最佳催化剂,在适宜的反应条件下,该催化剂上苯甲醇转化率可达99.5%以上,苯甲醛选择性达~100%。 催化剂可以被分离和循环使用多次,活性、选择性基本不变。 用水作溶剂,避免了有机溶剂的使用,是一个高效、绿色的苯甲醛选择氧化体系。  相似文献   

5.
易封萍  孙海洋 《应用化学》2010,27(7):860-862
以含磺酸基离子液体1-(4-磺酸基)丁基-3-甲基咪唑四氟硼酸盐([4-sulfbmim][BF4])为酸性催化剂,由乙缩醛和苯甲醇合成了叶青素。 采用正交实验方法考察了合成条件的影响,固定反应温度为20 ℃条件下,确定优化合成条件为:n(苯甲醇)∶n(乙缩醛)=1∶8,反应时间60 min,催化剂用量为每摩尔苯甲醇4 g,产率为92.2%。 与H2SO4催化剂相比[4-sulfbmim][BF4]的催化活性相对较弱,但综合效果优于H2SO4。 [4-sulfbmim][BF4]循环使用6次,催化活性基本不变。  相似文献   

6.
Aerobic epoxidation of olefins at a mild reaction temperature has been carried out by using nanomorphology of [Cu3(BTC)2] (BTC=1,3,5‐benzenetricarboxylate) as a high‐performance catalyst through a simple synthetic strategy. An aromatic carboxylate ligand was employed to furnish a heterogeneous copper catalyst and also serves as the ligand for enhanced catalytic activities in the catalytic reaction. The utilization of a copper metal–organic framework catalyst was further extended to the aerobic oxidation of aromatic alcohols. The shape and size selectivity of the catalyst in olefin epoxidation and alcohol oxidation was investigated. Furthermore, the as‐synthesized copper catalyst can be easily recovered and reused several times without leaching of active species or significant loss of activity.  相似文献   

7.
Zirconium oxide complex‐functionalized mesoporous MCM‐41 (Zr‐oxide@MCM‐41) as an efficient and reusable catalyst is reported for the oxidation of sulfides into sulfoxides using hydrogen peroxide (H2O2) as the oxidant, with short reaction times in good to excellent yields at room temperature under solvent‐free conditions. Also, a simple and efficient method is reported for the oxidative coupling of thiols into corresponding disulfides in good to high yields using H2O2 as oxidant in the presence of Zr‐oxide@MCM‐41 as recoverable catalyst in ethanol at room temperature. A series of sulfides and thiols possessing functional groups was successfully converted into corresponding products. After completion of reactions the catalyst was easily separated with simple filtration from the reaction mixture and reused for several consecutive runs without significant loss of catalytic efficiency. The mesoporous catalyst was characterized using Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller surface area measurements, X‐ray diffraction, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy and thermogravimetric analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A high‐surface‐area boehmite was used as the support for a series of vanadium phosphate catalysts. The catalysts were prepared by heating of V2O5 in an isobutyl alcohol and benzyl alcohol mixture at 140°C for 5 h to reduce V5+ to more active V4+ in the presence of phosphoric acid. Then a series of catalysts with various VPO loadings on boehmite were synthesized. The catalysts were characterized using various techniques. The catalysts were utilized for extraction combined with catalytic oxidation of dibenzothiophene. The important factors influencing the desulfurization process, including reaction time, temperature, H2O2, catalyst loading, catalyst amount and solvents, were systematically investigated. Under the optimized reaction conditions, i.e. 30 mg of catalyst loading at 50°C and in 60 min, sulfur removal reached 94%. The catalyst was recycled and reused five times.  相似文献   

9.
The green synthesis of 2‐(4‐((1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)oxy)phenyl)quinazolin‐4(3H)‐one derivatives is reported. The catalyst for this synthesis is copper‐supported β‐cyclodextrin‐functionalized magnetic silica–iron oxide nanoparticles ([Cu@BCD@SiO2@SPION]). [Cu@BCD@SiO2@SPION] simultaneously catalyses ‘click’ reaction, oxidation of C? N bond and multicomponent reaction. The desired 1,2,3‐triazolylquinazolinone product is easily obtained in water at room temperature under mild reaction conditions. Another advantage of the catalyst is its reusability. It can simply be isolated using an external magnet and reused in reactions with no significant decrease in catalyst efficiency. Transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometry and Fourier transform infrared spectroscopy are used for exact characterization of the [Cu@BCD@SiO2@SPION] catalyst.  相似文献   

10.
Tetrakis[heptadecafluorononyl] substituted phthalocyanine complexes were prepared by template synthesis from 4‐(heptadecafluorononyloxy)phthalonitrile with Co(CH3COO)·2H2O or PdCl2 in 2‐N, N‐dimethylaminoethanol. The corresponding phthalonitrile was obtained from heptadecafluorononan‐1‐ol and 4‐nitrophthalonitrile with K2CO3 in DMF at 50 °C. The structures of the compounds were characterized by elemental analysis, FTIR, UV–vis and MALDI‐TOF MS spectroscopic methods. Metallophthalocyanines are soluble in fluoroalkanes such as perfluoromethylcyclohexane (PFMCH). The complexes were tested as catalysts for benzyl alcohol oxidation with tert‐butylhydroperoxide (TBHP) in an organic–fluorous biphasic system (n‐hexane–PFMCH). The oxidation of benzyl alcohol was also tested with different oxidants, such as hydrogen peroxide, m‐chloroperoxybenzoic acid, molecular oxygen and oxone in n‐hexane–PFMCH. TBHP was found to be the best oxidant for benzyl alcohol oxidation since higher conversion and selectivity were observed when this oxidant was used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
制备了三缺位Keggin型反应控制相转移催化剂[C7H7(CH3)3N]9PW9O34(记为Q9PW9),利用FT-IR、31P NMR、XRD和TG对催化剂进行了表征,并确定了反应的催化活性中心。 分析结果表明,催化剂Q9PW9在反应后其结构仍然得到了很好的保持,反应中形成的[C7H7(CH3)3N]9PW9O34 (O2)x活性中心使催化剂具有反应控制相转移功能。以H2O2水溶液为氧化剂,在氧化苯甲醇制备苯甲醛反应中,发现该催化剂具有良好的催化活性。当H2O2与苯甲醇的物质的量比为0.9时,苯甲醇的转化率为86.2%,苯甲醛的选择性≥99%。反应结束后催化剂以沉淀的形式析出,催化剂的回收率保持在86%左右。将催化剂循环使用三次,苯甲醇的转化率和催化剂的回收率均无明显变化,说明Q9PW9具有良好的稳定性。  相似文献   

12.
The combination of the d8 RhI diolefin amide [Rh(trop2N)(PPh3)] (trop2N=bis(5‐H‐dibenzo[a,d]cyclohepten‐5‐yl)amide) and a palladium heterogeneous catalyst results in the formation of a superior catalyst system for the dehydrogenative coupling of alcohols. The overall process represents a mild and direct method for the synthesis of aromatic and heteroaromatic carboxylic acids for which inactivated olefins can be used as hydrogen acceptors. Allyl alcohols are also applicable to this coupling reaction and provide the corresponding saturated aliphatic carboxylic acids. This transformation has been found to be very efficient in the presence of silica‐supported palladium nanoparticles. The dehydrogenation of benzyl alcohol by the rhodium amide, [Rh]N, follows the well established mechanism of metal–ligand bifunctional catalysis. The resulting amino hydride complex, [RhH]NH, transfers a H2 molecule to the Pd nanoparticles, which, in turn, deliver hydrogen to the inactivated alkene. Thus a domino catalytic reaction is developed which promotes the reaction R‐CH2‐OH+NaOH+2 alkene→R‐COONa+2 alkane.  相似文献   

13.
The catalytic activity of dioxidobis{2-[(E)-p-tolyliminomethyl]phenolato}molybdenum(VI) complex was studied, for the first time, in the selective oxidation of various primary and secondary alcohols using tert-BuOOH as oxidant under organic solvent-free conditions at room temperature. The effect of different solvents was studied in the oxidation of benzyl alcohol in this catalytic system. It was found that, under organic solvent-free conditions, the catalyst oxidized various primary and secondary alcohols to their corresponding aldehyde or ketone derivatives with high yield. The effects of other parameters such as oxidant and amount of catalyst were also investigated. Among different oxidants such as H2O2, NaIO4, tert-BuOOH, and H2O2/urea, tert-BuOOH was selected as oxygen donor in the oxidation of benzyl alcohol. Also, it was found that oxidation of benzyl alcohol required 0.02 mmol catalyst for completion. Dioxomolybdenum(VI) Schiff base complex exhibited good catalytic activity in the oxidation of alcohols with tert-BuOOH under mild conditions. In this catalytic system, different primary alcohols gave the corresponding aldehydes in good yields without further oxidation to carboxylic acids.  相似文献   

14.
《Comptes Rendus Chimie》2015,18(2):132-136
The organometallic coordination polymer [(nBu3Sn)2WO4] catalyzed the selective oxidation of secondary and primary amines to nitrones and oximes, respectively. The catalyst was found to be reusable for five catalytic cycles without any appreciable loss in activity. Under the optimized reaction conditions [4 mol% catalyst, 3–4 equiv of hydrogen peroxide (30 wt%, aqueous solution), methanol as the solvent, r.t.], the corresponding nitrones and oximes were obtained with good efficiency.  相似文献   

15.
The epoxidation of alkenes with hydrogen peroxide catalyzed by [PZnMo2W9O39]5-, ZnPOM, supported on ionic liquid-modified silica, Im-SiO2, is reported. The immobilized catalyst, [ZnPOM@Im-SiO2] was characterized by elemental analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR and UV–Vis spectroscopic methods. This new synthesized hybrid catalyst was applied for efficient epoxidation of various olefins with aqueous H2O2 in acetonitrile under reflux conditions. This solid catalyst can be easily recovered by simple filtration and reused several times without significant loss of its catalytic activity.  相似文献   

16.
《Comptes Rendus Chimie》2016,19(10):1156-1165
A W-containing apatite (W/HAp) catalyst was prepared following a hydrothermal synthesis route and served as a model catalyst. Crystallographic analysis indicated that the resulting material contained hydroxyapatite, Ca10−3xWx(PO4)6(OH)2, W-hydroxyapatite, calcium tungstate, CaWO4, and tricalcium phosphate, Ca3(PO4)2. The catalyst was investigated in liquid phase oxidation of benzyl alcohol and xylenes using hydrogen peroxide as an oxidant. For comparison, commercial calcium phosphate, hydroxyapatite and CaWO4 were tested in the same reaction. Calcium phosphate and hydroxyapatite appeared as inactive and decomposed hydrogen peroxide non-selectively. A moderate activity but low hydrogen peroxide efficiency was observed for the CaWO4 phase. In contrast, the W/HAp catalyst showed a reasonable activity and a better hydrogen peroxide efficiency in the oxidation of benzyl alcohol and xylenes. This new W/HAp catalyst showed, after six cycles, losses of the activity below 15% compared to the fresh catalyst with no effect on the selectivity. It is noteworthy that ICP-OES analyses showed no tungsten leaching that is the main advantage of this catalyst.  相似文献   

17.
The Michael addition of indoles to electron‐deficient nitroolefins was effectively catalyzed by an ionic liquid‐coordinated ytterbium(III) sulfonate catalyst. The recycling procedure of the catalyst was very simple without extraction with water, and the catalyst was reused for five times without any loss of its catalytic activity. Furthermore, to demonstrate the application of this methodology, the Pictet‐Spengler reaction was chosen and successfully carried out in the mixture of Br?nsted‐acidic ionic liquid and [bmim]BF4.  相似文献   

18.
A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.  相似文献   

19.
Commercially available molybdenum(VI) compounds, including molybdenum trioxide, were successfully employed as catalyst precursors in the epoxidation of olefins with urea–hydrogen peroxide adduct (UHP) in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6]. After oxidation, the corresponding epoxides were isolated by extraction with diethyl ether. Additionally the ionic liquid–catalyst mixture was recycled and reused in further catalytic cycles. The catalytic species is assumed to be an oxodiperoxomolybdenum species which forms in situ. A representative complex of this type was thus isolated and characterised. Reaction of excess 4-methylpyridine-1-oxide (4-MepyO) with MoO3 dissolved in aqueous hydrogen peroxide afforded [Mo(O)(O2)2(4-MepyO)2]·H2O (1) as yellow crystals. Compound 1, an active epoxidation catalyst, was subsequently characterised and its structure determined by X-ray crystallography.  相似文献   

20.
The Baeyer-Villiger oxidation of cyclic ketones can be effected by methyltrioxorhenium/hydrogen peroxide in the ionic liquid [bmim]BF4. After simple extraction of the lactone with diethyl ether, the catalyst can be repeatedly recycled and efficiently reused for the lactonisation process in the same reaction medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号