首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce modular symmetric designs and use them to study the existence of Hadamard matrices modulo 5. We prove that there exist 5‐modular Hadamard matrices of order n if and only if or . In particular, this solves the 5‐modular version of the Hadamard conjecture.  相似文献   

2.
Skew Hadamard difference sets have been an interesting topic of study for over 70 years. For a long time, it had been conjectured the classical Paley difference sets (the set of nonzero quadratic residues in where ) were the only example in Abelian groups. In 2006, the first author and Yuan disproved this conjecture by showing that the image set of is a new skew Hadamard difference set in with m odd, where denotes the first kind of Dickson polynomials of order n and . The key observation in the proof is that is a planar function from to for m odd. Since then a few families of new skew Hadamard difference sets have been discovered. In this paper, we prove that for all , the set is a skew Hadamard difference set in , where m is odd and . The proof is more complicated and different than that of Ding‐Yuan skew Hadamard difference sets since is not planar in . Furthermore, we show that such skew Hadamard difference sets are inequivalent to all existing ones for by comparing the triple intersection numbers.  相似文献   

3.
A characterization of ‐cocyclic Hadamard matrices is described, depending on the notions of distributions, ingredients, and recipes. In particular, these notions lead to the establishment of some bounds on the number and distribution of 2‐coboundaries over to use and the way in which they have to be combined in order to obtain a ‐cocyclic Hadamard matrix. Exhaustive searches have been performed, so that the table in p. 132 in A. Baliga, K. J. Horadam, Australas. J. Combin., 11 (1995), 123–134 is corrected and completed. Furthermore, we identify four different operations on the set of coboundaries defining ‐cocyclic matrices, which preserve orthogonality. We split the set of Hadamard matrices into disjoint orbits, define representatives for them, and take advantage of this fact to compute them in an easier way than the usual purely exhaustive way, in terms of diagrams. Let be the set of cocyclic Hadamard matrices over having a symmetric diagram. We also prove that the set of Williamson‐type matrices is a subset of of size .  相似文献   

4.
We construct Hadamard matrices of orders and , and skew‐Hadamard matrices of orders and . As far as we know, such matrices have not been constructed previously. The constructions use the Goethals–Seidel array, suitable supplementary difference sets on a cyclic group and a new efficient matching algorithm based on hashing techniques.  相似文献   

5.
In this paper, we describe some necessary and sufficient conditions for a set of coboundaries to yield a cocyclic Hadamard matrix over the dihedral group . Using this characterization, new classification results for certain cohomology classes of cocycles over are obtained, extending existing exhaustive calculations for cocyclic Hadamard matrices over from order 36 to order 44. We also define some transformations over coboundaries, which preserve orthogonality of ‐cocycles. These transformations are shown to correspond to Horadam's bundle equivalence operations enriched with duals of cocycles.  相似文献   

6.
The problem of the existence of a decomposition of the complete graph into disjoint copies of has been solved for all admissible orders n, except for 27, 36, 54, 64, 72, 81, 90, 135, 144, 162, 216, and 234. In this paper, I eliminate 4 of these 12 unresolved orders. Let Γ be a ‐design. I show that divides 2k3 for some and that . I construct ‐designs by prescribing as an automorphism group, and show that up to isomorphism there are exactly 24 ‐designs with as an automorphism group. Moreover, I show that the full automorphism group of each of these designs is indeed . Finally, the existence of ‐designs of orders 135, 162, and 216 follows immediately by the recursive constructions given by G. Ge and A. C. H. Ling, SIAM J Discrete Math 21(4) (2007), 851–864.  相似文献   

7.
An elementary construction yields a new class of circulant (so‐called “Butson‐type”) generalized weighing matrices, which have order and weight n2, all of whose entries are nth roots of unity, for all positive integers , where . The idea is extended to a wider class of constructions giving various group‐developed generalized weighing matrices.  相似文献   

8.
Suppose that and . We construct a Latin square of order n with the following properties:
  • has no proper subsquares of order 3 or more .
  • has exactly one intercalate (subsquare of order 2) .
  • When the intercalate is replaced by the other possible subsquare on the same symbols, the resulting Latin square is in the same species as .
Hence generalizes the square that Sade famously found to complete Norton's enumeration of Latin squares of order 7. In particular, is what is known as a self‐switching Latin square and possesses a near‐autoparatopism.  相似文献   

9.
A λ‐design is a family of subsets of such that for all and not all are of the same size. Ryser's and Woodall's λ‐design conjecture states that each λ‐design can be obtained from a symmetric block design by a certain complementation procedure. Our main result is that the conjecture is true when λ < 63. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 408–431, 2012  相似文献   

10.
Using the technique of amalgamation‐detachment, we show that the complete equipartite multigraph can be decomposed into cycles of lengths (plus a 1‐factor if the degree is odd) whenever there exists a decomposition of into cycles of lengths (plus a 1‐factor if the degree is odd). In addition, we give sufficient conditions for the existence of some other, related cycle decompositions of the complete equipartite multigraph .  相似文献   

11.
Generalizing a result by Buratti et al.[M. Buratti, F. Rania, and F. Zuanni, Some constructions for cyclic perfect cycle systems, Discrete Math 299 (2005), 33–48], we present a construction for i‐perfect k‐cycle decompositions of the complete m‐partite graph with parts of size k. These decompositions are sharply vertex‐transitive under the additive group of with R a suitable ring of order m. The construction works whenever a suitable i‐perfect map exists. We show that for determining the set of all triples for which such a map exists, it is crucial to calculate the chromatic numbers of some auxiliary graphs. We completely determine this set except for one special case where is the product of two distinct primes, is even, and . This result allows us to obtain a plethora of new i‐perfect k‐cycle decompositions of the complete graph of order (mod 2k) with k odd. In particular, if k is a prime, such a decomposition exists for any possible i provided that .  相似文献   

12.
Difference systems of sets (DSSs) are combinatorial structures arising in connection with code synchronization that were introduced by Levenshtein in 1971, and are a generalization of cyclic difference sets. In this paper, we consider a collection of m‐subsets in a finite field of prime order to be a regular DSS for an integer m, and give a lower bound on the parameter ρ of the DSS using cyclotomic numbers. We show that when we choose ‐subsets from the multiplicative group of order e, the lower bound on ρ is independent of the choice of subsets. In addition, we present some computational results for DSSs with block sizes and , whose parameter ρ attains or comes close to the Levenshtein bound for .  相似文献   

13.
Quasi‐Hermitian varieties in are combinatorial generalizations of the (nondegenerate) Hermitian variety so that and have the same size and the same intersection numbers with hyperplanes. In this paper, we construct a new family of quasi‐Hermitian varieties. The isomorphism problem for the associated strongly regular graphs is discussed for .  相似文献   

14.
Triangle‐free quasi‐symmetric 2‐ designs with intersection numbers ; and are investigated. Possibility of triangle‐free quasi‐symmetric designs with or is ruled out. It is also shown that, for a fixed x and a fixed ratio , there are only finitely many triangle‐free quasi‐symmetric designs. © 2012 Wiley Periodicals, Inc. J Combin Designs 00: 1‐6, 2012  相似文献   

15.
The Hamilton–Waterloo problem asks for which s and r the complete graph can be decomposed into s copies of a given 2‐factor F1 and r copies of a given 2‐factor F2 (and one copy of a 1‐factor if n is even). In this paper, we generalize the problem to complete equipartite graphs and show that can be decomposed into s copies of a 2‐factor consisting of cycles of length xzm; and r copies of a 2‐factor consisting of cycles of length yzm, whenever m is odd, , , and . We also give some more general constructions where the cycles in a given two factor may have different lengths. We use these constructions to find solutions to the Hamilton–Waterloo problem for complete graphs.  相似文献   

16.
A decomposition of a complete graph into disjoint copies of a complete bipartite graph is called a ‐design of order n. The existence problem of ‐designs has been completely solved for the graphs for , for , K2, 3 and K3, 3. In this paper, I prove that for all , if there exists a ‐design of order N, then there exists a ‐design of order n for all (mod ) and . Giving necessary direct constructions, I provide an almost complete solution for the existence problem for complete bipartite graphs with fewer than 18 edges, leaving five orders in total unsolved.  相似文献   

17.
It is shown that, if is a nontrivial 2‐ symmetric design, with , admitting a flag‐transitive automorphism group G of affine type, then , p an odd prime, and G is a point‐primitive, block‐primitive subgroup of . Moreover, acts flag‐transitively, point‐primitively on , and is isomorphic to the development of a difference set whose parameters and structure are also provided.  相似文献   

18.
A cross‐free set of size m in a Steiner triple system is three pairwise disjoint m‐element subsets such that no intersects all the three ‐s. We conjecture that for every admissible n there is an STS(n) with a cross‐free set of size which if true, is best possible. We prove this conjecture for the case , constructing an STS containing a cross‐free set of size 6k. We note that some of the 3‐bichromatic STSs, constructed by Colbourn, Dinitz, and Rosa, have cross‐free sets of size close to 6k (but cannot have size exactly 6k). The constructed STS shows that equality is possible for in the following result: in every 3‐coloring of the blocks of any Steiner triple system STS(n) there is a monochromatic connected component of size at least (we conjecture that equality holds for every admissible n). The analog problem can be asked for r‐colorings as well, if and is a prime power, we show that the answer is the same as in case of complete graphs: in every r‐coloring of the blocks of any STS(n), there is a monochromatic connected component with at least points, and this is sharp for infinitely many n.  相似文献   

19.
Given nonnegative integers , the Hamilton–Waterloo problem asks for a factorization of the complete graph into α ‐factors and β ‐factors. Without loss of generality, we may assume that . Clearly, v odd, , , and are necessary conditions. To date results have only been found for specific values of m and n. In this paper, we show that for any integers , these necessary conditions are sufficient when v is a multiple of and , except possibly when or 3. For the case where we show sufficiency when with some possible exceptions. We also show that when are odd integers, the lexicographic product of with the empty graph of order n has a factorization into α ‐factors and β ‐factors for every , , with some possible exceptions.  相似文献   

20.
Turyn‐type sequences, , are quadruples of ‐sequences , with lengths , respectively, where the sum of the nonperiodic autocorrelation functions of and twice that of is a δ‐function (i.e., vanishes everywhere except at 0). Turyn‐type sequences are known to exist for all even n not larger than 36. We introduce a definition of equivalence to construct a canonical form for in general. By using this canonical form, we enumerate the equivalence classes of for . We also construct the first example of Turyn‐type sequences .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号