首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ZnO nanoparticles were synthesized via Pechini method at various post-annealing temperatures (400°, 500°, and 600 °C) and silver doping concentrations (Zn:Ag molar ratios of 30, 20, and 10). Multifarious microstructural features including crystallite size, size-strain based broadening, residual stress, preferential orientation, crystallinity degree, lattice parameters, unit cell variation, and stacking fault probability were surveyed through phase analysis, Williamson-Hall plot, texture coefficient and unit cell calculations. X-ray probing verified good crystallinity with a hexagonal close pack Wurtzite morphology. Williamson-Hall analysis exhibited distributions of crystallite size and microstrain as well as their contributions on the line broadening of the host ZnO and guest Ag phases upon annealing-doping treatments. Textural analysis revealed the alteration in anisotropic crystallinity of the host phase and transformation of the preferred directions, (100) and (101), as function of annealing-doping processes. Besides, while guest Ag phase was shown to be polycrystalline with randomly orientated crystals at moderate concentration with respect to thermal treatment, preferential orientation went through a major change, (220) to (111), with increment in Ag loadings. Under identical synthetic conditions, the distinction in the lattice constants and unit cell variation between pure and doped ZnO nanoparticles was enforced and results verified major impressionability via annealing and doping factors.  相似文献   

2.
In this work, titanium dioxide (TiO2) nanowires were synthesized by the sol–gel method, without using any kind of templates, instead of that acetic acid was used as morphological modifier. In order to control crystalline phases and crystal size, TiO2 was calcinated at 400, 500 and 600 °C during 1 h. The resulting morphology was nanowires, which diameter was maintained constant after calcination at different temperature (about 76 nm). Moreover, crystalline phases in order of predominance were anatase, anatase–rutile and rutile–anatase at 400, 500 and 600 °C, respectively. Additionally, the crystallite size increases with respect to temperature from 13 to 75 nm.  相似文献   

3.
Undoped and silver-doped TiO2 nanoparticles (Ti1?x Ag x O2, where x?=?0.00?C0.10) were synthesized by a sol?Cgel method. The synthesized products were characterized by X-ray diffraction (XRD), particle size analyzer (PSA), scanning electron microscope (SEM), and UV?CVisible spectrophotometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average crystallite size of synthesized nanoparticles was determined from X-ray line broadening using the Debye?CScherrer formula. The crystallite size was varied from 8 to 33?nm as the calcination temperature was increased from 300 to 800?°C. The incorporation of 3 to 5% Ag+ in place of Ti4+ provoked a decrease in the size of nanocrystals as compared to undoped TiO2. The SEM micrographs revealed the agglomerated spherical-like morphology of particles. SEM, PSA, and XRD measurements show that the particles size of the powder is in nanoscale. Optical absorption measurements indicated a red shift in the absorption band edge upon silver doping. Direct allowed band gap of undoped and Ag-doped TiO2 nanoparticles measured by UV?CVis spectrometer were 3.00 and 2.80?eV, respectively, at 500?°C.  相似文献   

4.
《印度化学会志》2022,99(11):100744
ZnO nanoparticles are one of the prominent photocatalysts for environmental applications due to its high redox ability, nontoxic and higher stability. This report explains the synthesis of ZnO nanoparticles by a simple solution combustion method using zinc nitrate hexahydrate as an oxidizing agent and incense stick powder as fuel at 400 °C. Several techniques were adopted for the characterization of the obtained product. X-ray diffraction (XRD) pattern shows that a lower concentration of fuel gives pure ZnO and a higher concentration of fuel results in calcium doped ZnO with a cubic phase having a crystallite size of 32–28 nm. UV–vis spectrum shows that as the fuel concentration increases, band gap decreases and reaches to 3.33 eV for 3 g of fuel. Spongy networks with many pores wereobserved in the scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed the average particle size of Ca doped ZnO NPs is about 20 nm. Pure and Ca doped ZnO nanoparticles were examined for photocatalytic degradation of methylene blue (MB) dye under UV light irradiation. The results prove that Ca doped ZnO nanoparticles show good photocatalytic activity.  相似文献   

5.
Magnetic nanoparticles of cobalt ferrite have been synthesized by citrate precursor method. TG-DSC studies have been made to get the idea of the optimum temperature of annealing that could lead to the formation of nanoparticles. Annealing the citrate precursor was done at 450, 650, and 973?°C. The X-ray diffraction (XRD) studies and the scanning electron microscopy (SEM) have been used for characterization. The data from vibrating sample magnetometer and photoluminescence spectrometer (PL) have been analyzed for exploring their applications. Using the Scherrer formula, the crystallite size was found to be 25, 32, and 43?nm, respectively, using the three temperatures. The particle size increased with annealing temperature. Rietveld refinements on the X-ray (XRD) data were done on the cobalt ferrite nanoparticles (monoclinic cells) obtained on annealing at 650?°C, selecting the space group P2/M. The values of coercivity (1574.4?G) and retentivity (18.705?emu g?1) were found out in the sample annealed at 650?°C while magnetization (39.032?emu g?1) was also found in the sample annealed at 973?°C. The photoluminescence (PL) property of these samples were studied using 225, 330, and 350?nm excitation wavelength radiation source. The PL intensity was found to be increasing with the particle size.  相似文献   

6.
The morphological manipulation and structural characterisation of TiO2?CMgO binary system by an aqueous particulate sol?Cgel route were reported. Different crystal structures including pure MgTiO3, mixtures of MgTiO3 and TiO2 and mixtures of MgTiO3 and Mg2TiO4 were tailored by controlling Mg:Ti molar ratio and annealing temperatures as the processing parameters. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that all compounds crystallised at the low temperature of 500?°C. Furthermore, it was found that the average crystallite size of the compounds depends upon the Mg:Ti molar ratio as well as the annealing temperature, being in the range 3?C5?nm at 500?°C and around 6?nm at 700?°C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had nanocrystalline structure with the average grain size of 25?C30?nm at 500?°C depending upon the Mg:Ti molar ratio. Moreover, atomic force microscope (AFM) images presented that the thin films had a hill-valley like morphology made up of small grains.  相似文献   

7.
The artificial graphite materials were prepared by carbonizing coal tar pitch using two methods, namely, one- and two-step processes, and all sintered samples were graphitized at 2800 °C. Effects of different heat treatments on the performance of the samples were characterized by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, Brunauer–Emmett–Teller, electrochemical impedance spectroscopy (EIS), particle size analysis, polarized light microscopy, and charge–discharge measurements. All samples show a typical graphite crystalline structure; moreover, the degree of graphitization (g factor) and crystallite size along the c-axis (L c ) were calculated from (002) peak. The polarized light microscopy indicates that the coke with carbonization at 700 °C has an obvious wide domain (D) optical structure, while that with two-step sintering at 400 and 700 °C has a mixed optical structures of wide D, flow domains, and mosaics. TEM analysis revealed a number of irregular graphene layer images which are caused by the defects of graphite. EIS shows that the sample carbonized by two-step has a larger diffusion coefficient than the sample carbonized at 700 °C by one step. Higher carbonization temperature leads to better cycle performance as the temperature increasing from 500 to 700 °C in the one-step route. Specifically, the charge (Li+ extraction) capacity at the 50th cycle increases from 318 mA?h?g?1 to 357 mA?h?g?1. The results show that the rate performance of the artificial graphite is improved with the addition of the presintering at 400 °C.  相似文献   

8.
The synthesis of zinc sulfide (ZnS) quantum dots (QDs) by microwave heating in a water-ethanol medium is proposed. The effect of the synthesis temperature (80 °C, 100 °C, 120 °C, and 150 °C) on the QD characteristics is examined. Based on the analysis of X-ray diffraction profiles the conclusion is drawn that the hexagonal ZnS phase of wurtzite type with an average nanocrystal size of 2.6-3.7 nm forms in the synthesized QDs. The nanocrystallite size is found to increase with the QD synthesis heating temperature. The analysis of X-ray absorption spectra (XANES) at the zinc K-edge indicates a higher crystallinity of the QD samples prepared at higher synthesis temperatures. The combined analysis of X-ray diffraction profiles, optical diffuse reflectance spectra, and X-ray absorption spectra implies the following possible QD structure: the pure hexagonal ZnS phase of wurtzite type in the bulk of nanoparticles and the amorphous ZnO phase in the surface layer of nanoparticles.  相似文献   

9.
ZnO/ZnWO4 composite rod-like nanoparticles were synthesized by low-temperature soft solution method at 95 °C with different reaction times (1–120 h), in the presence of non-ionic copolymer surfactant Pluronic F68. Obtained nanoparticles had diameters in the range around 10 nm and length of 30 nm. Optical properties such as reflection and room temperature photoluminescence of obtained samples showed strong dependence on their crystallinity and composition. Photocatalytic activity of ZnO/ZnWO4 nanopowders was checked using photodegradation of selected dyes as model system. Obtained results were correlated with specific surface area, particle sizes, crystallinity and ZnO/ZnWO4 ratio of the samples. As crystallinity of ZnWO4 component in the ZnO/ZnWO4 increase, photocatalytic activity also increases. The main findings can be explained by charge transfer reactions that follow light absorption by ZnO and ZnWO4 in nanocomposite.  相似文献   

10.
The Silver Sulfide (Ag2S) nanostructures were synthesized via the facile co-precipitation method. Thorough study and analysis were carried out to reveal and compare the structural, optical, functional, and morphological characteristics of as-synthesized samples annealed at various temperatures. The XRD analysis characterized the structural properties of Ag2S nanoparticles, which unveiled the excellent crystallinity and monoclinic structure. The as-synthesized samples show an average crystallite size of 52 nm–41.7 nm. The modes of vibration and peak position of metal sulfides in Ag2S nanoparticles were investigated through the FTIR technique. The optical attributes of prepared samples were scrutinized using UV–Vis analysis, which portrays the cut-off wavelength in the range of 1192–1223 nm for non-annealed and annealed Ag2S nanoparticles, alongside the optical band gap is about 0.86 eV–0.96 eV. This work elucidates a novel approach to synthesis and scrutinises the characteristics of Ag2S nanoparticles by subjecting them to distinct annealing temperatures precisely, as-prepared, 200 °C and 400 °C.  相似文献   

11.
Formation of zirconia nanocrystals in the course of thermal treatment of an X-ray amorphous zirconium oxyhydroxide was studied. It was shown that the formation of tetragonal and monoclinic polymorphs of ZrO2 in the temperature range from 500 to 700°C occurs owing to dehydration and crystallization of amorphous hydroxide. An increase of the temperature up to 800°C and higher activates mass transfer processes and, as a result, activates the nanoparticle growth and increases the fraction of the phase based on monoclinic modification of ZrO2 due to mass transfer from the nanoparticles with the non-equilibrium tetragonal structure. Herewith, formed ZrO2 nanocrystals with monoclinic structure have a broad size distribution of crystallites, and the average crystallite size after thermal treatment at 1200°C for 20 min is about 42 nm.  相似文献   

12.
A rapid, microwave‐assisted hydrothermal method has been developed to access ultrafine ZnO hexagonal microrods of about 3–4 μm in length and 200–300 nm in width by using a 1:5 zinc nitrate/urea precursor system. The size and morphology of these ZnO materials can be influenced by subtle changes in precursor concentration, solvent system, and reaction temperature. Optimized conditions involve the use of a 1:3 water/ethylene glycol solvent system and 10 min microwave heating at 150 °C in a dedicated single‐mode microwave reactor with internal temperature control. Carefully executed control experiments ensuring identical heating and cooling profiles, stirring rates, and reactor geometries have demonstrated that for these preparations of ZnO microrods no differences between conventional and microwave dielectric heating are observed. The resulting ZnO microrods exhibited the same crystal phase, primary crystallite size, shape, and size distribution regardless of the heating mode. Similar results were obtained for the ultrafast preparation of ZnO nanoparticles with diameters of approximately 20 nm, synthesized by means of a nonaqueous sol–gel process at 200 °C from a Zn(acac)2 (acac=acetylacetonate) precursor in benzyl alcohol. The specific role of microwave irradiation in enhancing these nanomaterial syntheses can thus be attributed to a purely thermal effect as a result of higher reaction temperatures, more rapid heating, and a better control of process parameters.  相似文献   

13.
Low temperature lithium titanate compounds (i.e., Li4Ti5O12 and Li2TiO3) with nanocrystalline and mesoporous structure were prepared by a straightforward aqueous particulate sol–gel route. The effect of Li:Ti molar ratio was studied on crystallisation behaviour of lithium titanates. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the powders were crystallised at the low temperature of 500 °C and the short annealing time of 1 h. Moreover, it was found that Li:Ti molar ratio and annealing temperature influence the preferable orientation growth of the lithium titanate compounds. Transmission electron microscope (TEM) images showed that the average crystallite size of the powders annealed at 400 °C was in the range 2–4 nm and a gradual increase occurred up to 10 nm by heat treatment at 800 °C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had mesoporous and nanocrystalline structure with the average grain size of 21–28 nm at 600 °C and 49–62 nm at 800 °C depending upon the Li:Ti molar ratio. Moreover, atomic force microscope (AFM) images confirmed that the lithium titanate films had columnar like morphology at 600 °C, whereas they showed hill-valley like morphology at 800 °C. Based on Brunauer–Emmett–Taylor (BET) analysis, the synthesized powders showed mesoporous structure containing pores with needle and plate shapes. The surface area of the powders was enhanced by increasing Li:Ti molar ratio and reached as high as 77 m2/g for the ratio of Li:Ti = 75:25 at 500 °C. This is one of the smallest crystallite size and the highest surface areas reported in the literature, and the materials could be used in many applications such as rechargeable lithium batteries and tritium breeding materials.  相似文献   

14.
Nanocrystals of undoped and nickel-doped zinc oxide (Zn1?x Ni x O, where x?=?0.00?C0.05) were synthesized by the coprecipitation method. Crystalline size, morphology, and optical absorption of prepared samples were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and UV?Cvisible spectrometer. XRD and SEM studies revealed that Ni-doped ZnO crystallized in hexagonal wurtzite structure. Doping of ZnO with Ni2+ was intended to enhance the surface defects of ZnO. The incorporation of Ni2+ in place of Zn2+ provoked an increase in the size of nanocrystals as compared to undoped ZnO. Crystalline size of nanocrystals varied from 10 to 40?nm as the calcination temperature increased. Enhancement in the optical absorption of Ni-doped ZnO indicated that it can be used as an efficient photocatalyst under visible light irradiation. Optical absorption measurements indicated a red shift in the absorption band edge upon Ni doping. The band gap value of prepared undoped and Ni-doped ZnO nanoparticles decreased as annealing temperature was increased up to 800?°C.  相似文献   

15.
In this article, we present a detailed study regarding the preparation of nanosized zinc and magnesium chromites starting from a 4% poly(vinyl)alcohol (PVA) aqueous solution and metal nitrates. The controlled thermal treatment of these solutions has permitted the isolation of an intermediary solid product, used as precursor of the preferred mixed oxides: zinc and magnesium chromites. The as-obtained precursors were characterized by FT-IR spectrometry and thermal analysis. FT-IR spectrometry has evidenced the disappearance of the NO3 ? anions at 140?°C, due to the redox interaction with PVA. The thermal decompositions of the synthesized precursors were different, as resulted from both thermal analysis and FT-IR spectrometry. Thus, while ZnCrPVA precursor decomposes up to 400?°C with formation of zinc chromite, the precursor MgCrPVA decomposes up to 500?°C, with formation of MgCrO4 as intermediary amorphous phase. By thermal decomposition of MgCrO4 at 500?°C, weakly crystallized MgCr2O4 powder is obtained. The obtained chromite powders consist of fine nanoparticles with diameters ranging from 10 to 30?nm at 500?°C; on raising the annealing temperature to 1000?°C, chromite particles become octahedral, with diameter up to 500?nm, but with no sign of sintering.  相似文献   

16.
The low temperature perovskite-type calcium titanate (CaTiO3) thin films and powders with nanocrystalline and mesoporous structure were prepared by a straightforward particulate sol–gel route. The prepared sol had a narrow particle size distribution about 17 nm. X-ray diffraction and Fourier transform infrared spectroscopy revealed that, the synthesized powders had highly pure and crystallized CaTiO3 structure with preferable orientation growth along (1 2 1) direction at 400–800 °C. The activation energy of crystal growth was calculated 5.73 kJ/mol. Furthermore, transmission electron microscope images showed that the average crystallite size of the powders annealed at 400 °C was around 3.5 nm. Field emission scanning electron microscope analysis and atomic force microscope images revealed that, the deposited thin films had uniform, mesoporous and nanocrystalline structure with the average grain size in the range 33–39 nm depending on annealing temperature. Based on Brunauer–Emmett–Teller (BET) analysis, the synthesized powders showed mesoporous structure with BET surface area in the range 51–21 m2/g at 400–800 °C. One of the smallest crystallite size and one of the highest surface areas reported in the literature is obtained which can be used in many applications, such as photocatalysts.  相似文献   

17.
We propose a process for the synthesis of ZnO/NiO nanocomposites from ethanolic solutions by means of consecutive generation of ZnO and NiO nanoparticles. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) show that in the range 400–900°C, nanocomposites are two-phase mixtures of particles of hexagonal and cubic phases with ZnO dissolved in NiO; at 1000°C, Ni0.5Zn0.5O single-phase solid solution is generated. The mean particle size determined from TEM data and diffraction peak broadening increases with rising temperature. In the cathodoluminescence spectrum of a sample annealed at 400°C, the luminescence peak shifts to the UV. Specific magnetization versus magnetic field measurements in nanocomposites show hysteresis; the coercive force reaches 200 Oe.  相似文献   

18.
Thermal behavior of highly crystalline ε-Fe2O3 nanoparticles of different apparent crystallite sizes was characterized using thermogravimetry, differential thermal analysis, and analysis of evolved gas by mass spectrometry. Phase composition of the samples was monitored ex situ by X-ray powder diffraction. The results show that the thermal stability of this metastable iron oxide polymorph decreases with increasing particle size. For the particle diameter of 19(2) nm, the transformation temperature was equal to 794(5) °C, while for 28(2) nm only 755(10) °C. Surface of the nanoparticles contained adsorbed water and carbon dioxide. Elimination of these species proceeds in two steps. Water is removed at temperatures below 200 °C and CO2 in the temperature range between 200 and 450 °C.  相似文献   

19.
TiO2/SnO2 nanocomposites are studied as potential candidates for gas sensors. Commercial metal oxide nanopowders milled for 1?h in ethanol are used for preparing nanocomposites with varied composition from 100?mol% TiO2 to 100?mol% SnO2. Brunauer?CEmmett?CTeller (BET) adsorption isotherms served to determine specific surface area, SSA. The particle size distribution is established by means of Dynamic Light Scattering, DLS technique. Differential Thermal Analysis and Thermogravimetry, DTA/TG measurements within the temperature range of 20?C900?°C indicate better stability of nanomaterials composed of bigger particles or agglomerates. The total mass loss varies from 0.9 to 8.5% for 100?mol% SnO2 and 100?mol% TiO2, respectively. The only gaseous products of decomposition are water and carbon dioxide. X-ray diffraction analysis of nanocomposites indicates two separate phases of different crystallite size, i.e., smaller rutile TiO2 (9?nm) and larger cassiterite SnO2 (28?nm). Gas sensor dynamic responses at 400?°C to the reducing gas??ammonia (NH3) are detected in the concentration range extending from 100?ppm to ?5000?ppm. Nanosensor of 50?mol% SnO2/50?mol% TiO2 is stable and sensitive to the interaction with NH3 and gives the highest response at 400?°C.  相似文献   

20.
ZnO nanoparticles (NPs) with tunable morphologies were synthesized by a hybrid electrochemical–thermal method at different calcination temperatures without the use of any surfactant or template. The NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, dynamic light scattering, thermogravimetry–differential thermal analysis, scanning electron microscope and N2 gas adsorption–desorption studies. The FT-IR spectra of ZnO NPs showed a band at 450 cm?1, a characteristic of ZnO, which remained fairly unchanged at calcination temperatures even above 300 °C, indicating complete conversion of the precursor to ZnO. The products were thermally stable above 300 °C. The ZnO NPs were present in a hexagonal wurtzite phase and the crystallinity of ZnO increased with an increasing calcination temperature. The ZnO NPs calcined at lower temperature were mesoporous in nature. The surface areas of ZnO NPs calcined at 300 and 400 °C were 51.10 and 40.60 m2 g?1, respectively, which are significantly larger than commercial ZnO nanopowder. Surface diffusion has been found to be the key mechanism of sintering during heating from 300 to 700 °C with the activation energy of sintering as 8.33 kJ mol?1. The photocatalytic activity of ZnO NPs calcined at different temperatures evaluated by photocatalytic degradation of methylene blue under sunlight showed strong dependence on the surface area of ZnO NPs. The ZnO NPs with high surface area showed enhanced photocatalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号