首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme inhibitors are usually designed by taking into consideration the overall dimensions of the enzyme's active site pockets. This conventional approach often fails to produce desirable affinities of inhibitors for their cognate enzymes. To circumvent such constraints, we contemplated enhancing the binding affinities of inhibitors by attaching tether groups, which would interact with the surface exposed amino acid residues. This strategy has been tested for the inhibition of human carbonic anhydrase II. Benzenesulfonamide serves as a weak inhibitor for the enzyme, but when it is conjugated to iminodiacetate-Cu2+ (which interacts with the surface-exposed His residues) via a spacer group, its binding affinity is enhanced by about 2 orders of magnitude. This "two-prong" approach is expected to serve as a general strategy for converting weak inhibitors of enzymes into tight-binding inhibitors.  相似文献   

2.
The atomic-resolution crystal structures of human carbonic anhydrases I and II complexed with "two-prong" inhibitors are reported. Each inhibitor contains a benzenesulfonamide prong and a cupric iminodiacetate (IDA-Cu(2+)) prong separated by linkers of different lengths and compositions. The ionized NH(-) group of each benzenesulfonamide coordinates to the active site Zn(2+) ion; the IDA-Cu(2+) prong of the tightest-binding inhibitor, BR30, binds to H64 of CAII and H200 of CAI. This work provides the first evidence verifying the structural basis of nanomolar affinity measured for two-prong inhibitors targeting the carbonic anhydrases.  相似文献   

3.
The zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) is inhibited by several classes of zinc-binders (sulfonamides, sulfamates, and sulfamides) as well as by compounds which do not interact with the metal ion (phenols, polyamines and coumarins). Here we report a new class of potent CA inhibitors which bind the zinc ion: the dithiocarbamates (DTCs). They coordinate to the zinc ion from the enzyme active site in monodentate manner and establish many favorable interactions with amino acid residues nearby. Several low nanomolar CA I, II and IX inhibitors were detected.  相似文献   

4.
The binding properties of a series of benzenesulfonamide inhibitors (4‐substituted‐ureido‐benzenesulfonamides, UBSAs) of human carbonic anhydrase II (hCA II) enzyme with active site residues have been studied using a hybrid quantum mechanical/molecular mechanical (QM/MM) model. To account for the important docking interactions between the UBSAs ligand and hCA II enzyme, a molecular docking program AutoDock Vina is used. The molecular docking results obtained by AutoDock Vina revealed that the docked conformer has root mean square deviation value less than 1.50 Å compared to X‐ray crystal structures. The inhibitory activity of UBSA ligands against hCA II is found to be in good agreement with the experimental results. The thermodynamic parameters for inhibitor binding show that hydrogen bonding, hydrophilic, and hydrophobic interactions play a major role in explaining the diverse inhibitory range of these derivatives. Additionally, natural bond orbital analysis is performed to characterize the ligand–metal charge transfer stability. The insights gained from this study have great potential to design new hCA‐II inhibitor, 4‐[3‐(1‐p‐Tolyl‐4‐trifluoromethyl‐1H‐pyrazol‐3‐yl)‐ureido]‐benzenesulfonamide, which belongs to the family of UBSA inhibitors and shows similar type of inhibitor potency with hCA II. This work also reveals that a QM/MM model and molecular docking method are computationally feasible and accurate for studying substrate–protein inhibition. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
An approach for the synthesis of carbonic anhydrase (CA, EC 4.2.1.1) inhibitor coated gold nanoparticles is reported. This nanomaterial selectively inhibited the tumor-associated isoform CA IX overexpressed in hypoxic cancers over the ubiquitous, cytosolic housekeeping isozymes CA I and II and was membrane impermeant. As CA IX has an extracellular active site, the new nanomaterial which is confined to the extracellular space may be useful for imaging and treatment of hypoxic tumors.  相似文献   

6.
Activation of six human carbonic anhydrases (CA, EC 4.2.1.1), that is, hCA I, II, IV, VA, VII, and XIV, with l- and d-histidine was investigated through kinetics and by X-ray crystallography. l-His was a potent activator of isozymes I, VA, VII, and XIV, and a weaker activator of hCA II and IV. d-His showed good hCA I, VA, and VII activation properties, being a moderate activator of hCA XIV and a weak activator of hCA II and IV. The structures as determined by X-ray crystallography of the hCA II-l-His/d-His adducts showed the activators to be anchored at the entrance of the active site, contributing to extended networks of hydrogen bonds with amino acid residues/water molecules present in the cavity, explaining their different potency and interaction patterns with various isozymes. The residues involved in l-His recognition were His64, Asn67, Gln92, whereas three water molecules connected the activator to the zinc-bound hydroxide. Only the imidazole moiety of l-His interacted with these amino acids. For the d-His adduct, the residues involved in recognition of the activator were Trp5, His64, and Pro201, whereas two water molecules connected the zinc-bound water to the activator. Only the COOH and NH(2) moieties of d-His participated in hydrogen bonds with these residues. This is the first study showing different binding modes of stereoisomeric activators within the hCA II active site, with consequences for overall proton-transfer processes (rate-determining for the catalytic cycle). The study also points out differences of activation efficiency between various isozymes with structurally related activators, convenient for designing alternative proton-transfer pathways, useful both for a better understanding of the catalytic mechanism and for obtaining pharmacologically useful derivatives, for example, for the management of Alzheimer's disease.  相似文献   

7.
The first zinc-binding group (ZBG) to have been identified as inhibitor of the metallo-enzymes carbonic anhydrases (CA, EC 4.2.1.1) was the sulfonamide. From then on several classes of zinc-binders have been described. This work reports the benzenephosponamidates as a new chiral aromatic sulfonamide-mimic ZBG able to meet the requirements for effectively binding the enzyme active site. Several low micromolar CA I, II, VII, IX inhibitors were thus detected. Kinetic studies, QM-polarized ligand docking, and MM-GBSA in silico methods were used to characterize this newly identified CA inhibitor chemotype.  相似文献   

8.
A molecular platform for protein detection and quantification is reported in which recognition has been integrated with direct monitoring of target-protein binding. The platform is based on a versatile 42-residue helix-loop-helix polypeptide that dimerizes to form four-helix bundles and allows site-selective modification with recognition and reporter elements on the side chains of individually addressable lysine residues. The well-characterized interaction between the model target-protein carbonic anhydrase and its inhibitor benzenesulfonamide was used for a proof-of-concept demonstration. An affinity array was designed where benzenesulfonamide derivatives with aliphatic or oligoglycine spacers and a fluorescent dansyl reporter group were introduced into the scaffold. The affinities of the array members for human carbonic anhydrase II (HCAII) were determined by titration with the target protein and were found to be highly affected by the properties of the spacers (dissociation constant Kd=0.02-3 microM). The affinity of HCAII for acetazolamide (Kd=4 nM) was determined in a competition experiment with one of the benzenesulfonamide array members to address the possibility of screening substance libraries for new target-protein binders. Also, successful affinity discrimination between different carbonic anhydrase isozymes highlighted the possibility of performing future isoform-expression profiling. Our platform is predicted to become a flexible tool for a variety of biosensor and protein-microarray applications within biochemistry, diagnostics and pharmaceutical chemistry.  相似文献   

9.
A 3D QSAR selectivity analysis of carbonic anhydrase (CA) inhibitors using a data set of 87 CA inhibitors is reported. After ligand minimization in the binding pockets of CA I, CA II, and CA IV isoforms, selectivity CoMFA and CoMSIA 3D QSAR models have been derived by taking the affinity differences (DeltapKi) with respect to two CA isozymes as independent variables. Evaluation of the developed 3D QSAR selectivity models allows us to determine amino acids in the respective CA isozymes that possibly play a crucial role for selective inhibition of these isozymes. We further combined the ligand-based 3D QSAR models with the docking program AUTODOCK in order to screen for novel CA inhibitors. Correct binding modes are predicted for various CA inhibitors with respect to known crystal structures. Furthermore, in combination with the developed 3D QSAR models we could successfully estimate the affinity of CA inhibitors even in cases where the applied scoring function failed. This novel strategy to combine AUTODOCK poses with CoMFA/CoMSIA 3D QSAR models can be used as a guideline to assess the relevance of generated binding modes and to accurately predict the binding affinity of newly designed CA inhibitors that could play a crucial role in the treatment of pathologies such as tumors, obesity, or glaucoma.  相似文献   

10.
采用MCCE, Autodock及密度泛函方法对酮醇酸还原异构酶(KARI)与其抑制剂间相互作用进行了研究. 计算结果表明, KARI活性位点中的Mg2+在活性位点残基的离子化状态、活性位点的静电性质以及与抑制剂结合等方面起重要的作用; 同时, 抑制剂在结合方式、前线轨道布居及静电势等方面与酶促反应中间体(HOIV)具有一定程度的相似性; 可电离的羧基是当前发现的靶向KARI抑制剂一个重要的结构特征, 进一步推广可认为潜在的抑制剂应该拥有可电离成负电荷的功能团. 在药物设计中考虑到以上结论, 将有利于发现和改造靶向KARI的抑制剂.  相似文献   

11.
Ca2+ binding is essential for the biological functions of calmodulin (CaM) as a trigger/sensor protein to regulate many biological processes in the Ca2+ -signaling cascade. A challenge in understanding the mechanism of Ca2+ signaling is to obtain site-specific information about the Ca2+ binding properties of individual Ca2+ -binding sites of EF-hand proteins, especially for CaM. In this paper, we report the first estimation of the intrinsic Ca2+ affinities of the four EF-hand loops of calmoduin (I-IV) by individually grafting into the domain 1 of CD2. Taking advantage of the Trp residues in the host protein, we first determined metal-binding affinities for Tb3+, Ca2+, and La3+ for all four grafted EF-loops using Tb3+ aromatic resonance energy transfer. EF-loop I exhibits the strongest binding affinity for Ca2+, La3+, and Tb3+, while EF-loop IV has the weakest metal-binding affinity. EF-loops I-IV of CaM have dissociation constants for Ca2+ of 34, 245, 185, and 814 microM, respectively, with the order I > III approximately equal to II > IV. These findings support a charge-ligand-balanced model in which both the number of negatively charged ligand residues and the balanced electrostatic dentate-dentate repulsion by the adjacent charged residues are two major determinants for the relative Ca2+ -binding affinities of EF-loops in CaM. Our grafting method provides a new strategy to obtain site-specific Ca2+ binding properties and a better estimation of the cooperativity and conformational change contributions of coupled EF-hand proteins.  相似文献   

12.
We elaborate on a novel strategy for enhancing the binding affinity of an active-site directed inhibitor by attaching a tether group, designed to interact with the surface-exposed histidine residue(s) of enzymes. In this approach, we have utilized the recombinant form of human carbonic anhydrase-II (hCA-II) as the enzyme source and benzenesulfonamide and its derivatives as inhibitors. The steady-state kinetic and the ligand binding data revealed that the attachment of iminodiacetate (IDA)-Cu(2+) to benzenesulfonamide (via a triethylene glycol spacer) enhanced its binding affinity for hCA-II by about 40-fold. No energetic contribution of either IDA or triethylene glycol spacer was found (at least in the ground state of the enzyme-inhibitor complex) when Cu(2+) was stripped off from the tether group-conjugated sulfonamide derivative. Arguments are presented that the overall strategy of enhancing the binding affinities of known inhibitors by attaching the IDA-Cu(2+) groups to interact with the surface-exposed histidine residues will find a general application in designing the isozyme-specific inhibitors as potential drugs.  相似文献   

13.
Interaction energies of phenylalanine ammonia-lyase (PAL) active site residues with a series of PAL inhibitors have been partitioned into electrostatic, exchange, delocalization, and correlation components and compared with analogous results obtained previously for leucine aminopeptidase (LAP). In the latter metalloenzyme, either of the two charged residues controls entirely relative inhibitor binding energies, while at least four residues are required to determine ligand relative stabilization in neutral PAL. Significant correlation with experimental inhibitory activity was found between the stabilization energy at gradually decreasing levels of theory (MP2, SCF) down to the first-order Heitler-London term. Contrary to the LAP case, where the electrostatic term was sufficient to reproduce experimentally observed trends, in the case of PAL, exchange repulsion effects also have to be considered. Computational protocol presented herein constitutes a promising way to incorporate the first principle calculation's accuracy into the process of rational binding affinity prediction, revealing the physical nature of the interactions, where successive approximations can be introduced in a systematic and justifiable manner.  相似文献   

14.
VEGFR2介导肿瘤诱导的血管生成作用, 是抑制肿瘤生长和转移的新靶点. 为深入探讨VEGFR2活性腔性质以及与抑制剂的结合模式, 采用多拷贝同时搜寻法(MCSS)研究VEGFR2活性腔的性质, 然后用分子对接方法对5个已上临床的VEGFR抑制剂与VEGFR2活性腔进行对接计算, 讨论它们的结合模式, 确定与配体结合相关的关键残基. 研究发现: 疏水腔I, II是配体结合的关键区域, 残基Glu915, Cys917是关键的氢键作用位点, Lys866, Glu883和Asp1044形成的极性区域对提高配体亲合力很重要, 疏水腔III和极性腔IV是额外增强配体结合力的区域, IV区的Arg1030可提供额外的氢键作用位点. 本研究可为全新VEGFR2抑制剂的合理药物设计提供理论依据, 为寻找新的抗肿瘤药物奠定基础.  相似文献   

15.
Erat MC  Sigel RK 《Inorganic chemistry》2007,46(26):11224-11234
Group II introns are large metallo-ribozymes that use divalent metal ions in folding and catalysis. The 3'-terminal domain 6 (D6) contains a conserved adenosine whose 2'-OH group acts as the nucleophile in the first splicing step. In the hierarchy of folding, D6 binds last into the active site. In order to investigate and understand the folding process to the catalytically active intron structure, it is important to know the individual binding affinities of Mg2+ ions to D6. We recently studied the solution structure of a 27 nucleotide long D6 (D6-27) from the mitochondrial yeast group II intron Sc.ai5gamma, also identifying five Mg2+ binding sites including the one at the 5'-terminal phosphate residues. Mg2+ coordination to the 5'-terminal di- and triphosphate groups is strongest (e.g., log KA,TP = 4.55 +/- 0.10) and is evaluated here in detail for the first time. The other four binding sites within D6-27 are filled simultaneously (e.g., log KA,BR = 2.38 +/- 0.06) and thus compete for the free Mg2+ ions in solution, having a distinct influence on the individual affinities of the various sites. For the first time, we take this competition into account to obtain the intrinsic binding constants, describing a method that is generally applicable. Our data illustrates that any RNA molecule undergoing tertiary contacts to a second RNA molecule first needs to be loaded evenly and specifically with metal ions to compensate for the repulsion between the negatively charged RNA molecules.  相似文献   

16.
人顶体酶三维结构的同源模建及其与KF950的分子对接研究   总被引:3,自引:0,他引:3  
采用同源模建方法首次构建了人顶体酶的三维结构模型, 模型的可靠性经Ramachandran图和Profile_3D图验证. 采用InsightII/Binding site方法准确定位了人顶体酶的活性位点, 并研究了顶体酶重要功能残基在活性位点的立体分布. 在此基础上, 通过柔性分子对接方法首次阐明了顶体酶高效抑制剂KF950与靶酶活性位点的相互作用模式, 发现特异性的氢键相互作用是KF950产生高抑制活性的重要分子基础. 其研究结果将为合理设计新型顶体酶抑制剂, 寻找男性口服避孕药奠定坚实基础.  相似文献   

17.
The design and synthesis of receptors containing a Cu(II) binding site with appended ammonium groups (1) and guanidinium groups (2), along with thermodynamics analyses of anion binding, are reported. Both receptors 1 and 2 show high affinities (10(4) M(-1)) and selectivities for phosphate over other anions in 98:2 water:methanol at biological pH. The binding of the host-guest pairs is proposed to proceed through ion-pairing interactions between the charged functional groups on both the host and the guest. The affinities and selectivities for oxyanions were determined using UV/vis titration techniques. Additionally, thermodynamic investigations indicate that the 1:phosphate complex is primarily entropy driven, while the 2:phosphate complex displays both favorable enthalpy and entropy changes. The thermodynamic data for binding provide a picture of the roles of the host, guest, counterions, and solvent. The difference in the entropy and enthalpy driving forces for the ammonium and guanidinium containing hosts are postulated to derive primarily from differences in the solvation shell of these two groups.  相似文献   

18.
The complex formation of TEM-1 β-lactamase and its three mutant forms TEM-32, TEM-37, and TEM-39 with substrates cephalothin and CENTA and serine beta-lactamase inhibitors sulbactam, tazobactam, and clavulanic acid is studied using the methods of molecular dynamics. It is found that the stability of the complexes is caused by the electrostatic attraction between the deprotonated carboxyl group of the β-lactam ring of the substrate (inhibitor) and the positively charged amino groups of the lysine 234 and 73 residues, located in the active site of the enzymes. The formation of a hydrogen bond between this substrate group or its carbonyl oxygen with the hydroxyl group of the catalytic serine 70 residue and also between the negatively charged substituent groups and the positive charge region formed by the arginine 244 guanidine group and the asparagine 276 amino group is observed for some complexes. The binding energy of CENTA with TEM-1 β-lactamase is below the analogous binding energy of cephalothin, which is confirmed by the values of the Michaelis constants, determined experimentally. It is also found that the inhibitors bind to the mutant forms of β-lactamases related to the inhibitor-resistant phenotype, with higher affinity than TEM-1 β-lactamase.  相似文献   

19.
Several receptors for human carbonic anhydrase II (HCAII) have been prepared by covalently attaching benzenesulfonamide carboxylates via aliphatic aminocarboxylic acid spacers of variable length to the side chain of a lysine residue in a designed 42 residue helix-loop-helix motif. The sulfonamide group binds to the active site zinc ion of human carbonic anhydrase II located in a 15 A deep cleft. The dissociation constants of the receptor-HCAII complexes were found to be in the range from low micromolar to better than 20 nM, with the lowest affinities found for spacers with less than five methylene groups and the highest affinity found for the spacer with seven methylene groups. The results suggest that the binding is a cooperative event in which both the sulfonamide residue and the helix-loop-helix motif contribute to the overall affinity.  相似文献   

20.
Systematically modified octyl galactosides and octyl N-acetyllactosamines were assessed as inhibitors of, and substrates for, T. cruzi trans-sialidase (TcTS) in the context of exploring its acceptor substrate binding site. These studies show that TcTS, which catalyses the α-(2→3)-sialylation of non-reducing terminal β-galactose residues, is largely intolerant of substitution of the galactose 2 and 4 positions whereas substitution of the galactose 6 position is well tolerated. Further studies show that even the addition of a bulky sugar residue (glucose, galactose) does not impact negatively on TcTS binding and turnover, which highlights the potential of 'internal' 6-substituted galactose residues to serve as TcTS acceptor substrates. Results from screening a 93-membered thiogalactoside library highlight a number of structural features (notably imidazoles and indoles) that are worthy of further investigation in the context of TcTS inhibitor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号