首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The preparation of sterically hindered and polyfunctional C(alpha,alpha)-disubstituted alpha-amino acids (alpha alpha AAs) via alkylation of ethyl nitroacetate and transformation into derivatives ready for incorporation into peptides are described. Treatment of ethyl nitroacetate with N,N-diisopropylethylamine (DIEA) in the presence of a catalytic amount of tetraalkylammonium salt, followed by the addition of an activated alkyl halide or Michael acceptor, gives the doubly C-alkylated product in good to excellent yields. Selective nitro reduction with Zn in acetic acid or hydrogen over Raney Ni gives the corresponding amino ester that, upon saponification, can be protected with the fluorenylmethyloxycarbonyl (Fmoc) group. The first synthesis of an orthogonally protected, tetrafunctional C(alpha,alpha)-disubstituted analogue of aspartic acid, 2,2-bis(tert-butylcarboxymethyl)glycine (Bcmg), is described. Also, the sterically demanding C(alpha,alpha)-dibenzylglycine (Dbg) has been incorporated into a peptide using solid-phase synthesis. It was found that once sterically congested Dbg is at the peptide N-terminus, further chain extension becomes very difficult using uronium or phosphonium salts (PyAOP, PyAOP/HOAt, HATU). However, preformed amino acid symmetrical anhydride couples to N-terminal Dbg in almost quantitative yield in nonpolar solvent (dichloroethane-DMF, 9:1).  相似文献   

2.
Use of trichloroacetimidate linker in solid-phase Peptide synthesis   总被引:2,自引:0,他引:2  
A solid-phase method for the preparation of C-terminal amino-alcohol-containing peptides using activated Wang resin is presented. A diverse set of (fluorenylmethoxy)carbonyl (Fmoc) protected amino alcohols was found to load rapidly and efficiently. The synthetic utility of this approach was demonstrated through the direct synthesis of the peptide drug octreotide with excellent yield and purity. These results suggest that the use of trichloroacetimidate activated resins offers an attractive alternative in the preparation of this class of peptides.  相似文献   

3.
Overcoming the phenomenon known as "difficult" synthetic sequences has been a major goal in solid-phase peptide synthesis for over 30 years. In this work the advantages of amide backbone-substitution in the solid-phase synthesis of "difficult" peptides are augmented by developing an activated N(alpha)()-acyl transfer auxiliary. Apart from disrupting troublesome intermolecular hydrogen-bonding networks, the primary function of the activated N(alpha)()-auxiliary was to facilitate clean and efficient acyl capture of large or beta-branched amino acids and improve acyl transfer yields to the secondary N(alpha)()-amine. We found o-hydroxyl-substituted nitrobenzyl (Hnb) groups were suitable N(alpha)()-auxiliaries for this purpose. The relative acyl transfer efficiency of the Hnb auxiliary was superior to the 2-hydroxy-4-methoxybenzyl (Hmb) auxiliary with protected amino acids of varying size. Significantly, this difference in efficiency was more pronounced between more sterically demanding amino acids. The Hnb auxiliary is readily incorporated at the N(alpha)()-amine during SPPS by reductive alkylation of its corresponding benzaldehyde derivative and conveniently removed by mild photolysis at 366 nm. The usefulness of the Hnb auxiliary for the improvement of coupling efficiencies in the chain-assembly of difficult peptides was demonstrated by the efficient Hnb-assisted Fmoc solid-phase synthesis of a known hindered difficult peptide sequence, STAT-91. This work suggests the Hnb auxiliary will significantly enhance our ability to synthesize difficult polypeptides and increases the applicability of amide-backbone substitution.  相似文献   

4.
[reaction: see text] Two new 4-methoxybenzaldehyde backbone linker resins were developed for the solid-phase synthesis of peptides. The linkers are very stable during the cleavage of common protecting groups for amines (Fmoc, Boc) and carboxylic acids (Me, All, tBu) in peptide synthesis. Cleavage from the resin with refluxing TFA is sufficiently mild for peptides containing polar and nonpolar amino acids.  相似文献   

5.
C-Terminal peptide thioesters are key intermediates in the synthesis/semisynthesis of proteins and of cyclic peptides by native chemical ligation. They are prepared by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. Until recently, the chemical synthesis of C-terminal alpha-thioester peptides by SPPS was largely restricted to the use of Boc/Benzyl chemistry due to the poor stability of the thioester bond to the basic conditions required for the deprotection of the N(alpha)-Fmoc group. In the present work, we describe a new method for the SPPS of C-terminal thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. This step converts the acyl hydrazine group into a highly reactive acyl diazene intermediate which reacts with an alpha-amino acid alkyl thioester (H-AA-SR) to yield the corresponding peptide alpha-thioester in good yield. This method has been successfully used to prepare a variety of peptide thioesters, cyclic peptides, and a fully functional Src homology 3 (SH3) protein domain.  相似文献   

6.
An efficient new strategy for the synthesis of peptide and glycopeptide thioesters is described. The method relies on the side-chain immobilization of a variety of Fmoc-amino acids, protected at their C-termini, on solid supports. Once anchored, peptides were constructed using solid-phase peptide synthesis according to the Fmoc protocol. After unmasking the C-terminal carboxylate, either thiols or amino acid thioesters were coupled to afford, after cleavage, peptide and glycopeptide thioesters in high yields. Using this method a significant proportion of the proteinogenic amino acids could be incorporated as C-terminal amino acid residues, therefore providing access to a large number of potential targets that can serve as acyl donors in subsequent ligation reactions. The utility of this methodology was exemplified in the synthesis of a 28 amino acid glycopeptide thioester, which was further elaborated to an N-terminal fragment of the glycoprotein erythropoietin (EPO) by native chemical ligation.  相似文献   

7.
The first synthesis of the naturally occurring cyclic peptide euryjanicin B has been achieved.A general method was described to synthesize the cyclic peptide by a two-step solid-phase/solution synthesis strategy.All the amino acids in this study are L-configuration. The linear heptapeptide was assembled by standard Fmoc chemistry on solid-phase and subsequently cyclization was carried out by solution method.  相似文献   

8.
A novel cysteine derivative, N(alpha)-trityl-S-(9H-xanthen-9-yl)-l-cysteine [Trt-Cys(Xan)-OH] has been introduced for peptide synthesis, specifically for application to a new strategy for the preparation of cyclic peptides. The following steps were carried out to synthesize the cyclic model peptide cyclo(Cys-Thr-Abu-Gly-Gly-Ala-Arg-Pro-Asp-Phe): (i). side-chain anchoring of Fmoc-Asp-OAl via its free beta-carboxyl as a p-alkoxybenzyl ester to a solid support; (ii). stepwise chain elongation of the peptide by standard Fmoc/tBu solid-phase chemistry; (iii). removal of the N-terminal Fmoc group; (iv). coupling of Trt-Cys(Xan)-OH; (v). selective Pd(0)-promoted cleavage of the C-terminal allyl ester; (vi). coupling of the C-terminal residue, i.e., H-Phe-SBzl, preactivated as a thioester; (vii). selective removal of the N(alpha)-Trt and S-Xan protecting groups under very mild acid conditions; (viii). on-resin cyclization by native chemical ligation in an aqueous milieu; and (ix). final acidolytic cleavage of the cyclic peptide from the resin. The strategy was evaluated for three supports: poly[N,N-dimethacrylamide-co-poly(ethylene glycol)] (PEGA), cross-linked ethoxylate acrylate resin (CLEAR), and poly(ethylene glycol)-polystyrene (PEG-PS) graft resin supports. For PEGA and CLEAR, the desired cyclic product was obtained in 76-86% overall yield with initial purities of approximately 70%, whereas for PEG-PS (which does not swell nearly as well in water), results were inferior. Solid-phase native chemical ligation/cyclization methodology appears to have advantages of convenience and specificity, which make it promising for further generalization.  相似文献   

9.
The first straightforward building block based (non-interassembly) synthesis of peptides containing adenylylated serine and threonine residues is described. Key features include final global acidolytic protective group removal as well as full compatibility with standard Fmoc solid-phase peptide synthesis (SPPS). The described Thr-AMP SPPS-building block has been employed in the synthesis of the Thr-adenylylated sequence of human GTPase CDC42 (Ac-SEYVP-T(AMP)-VFDNYGC-NH(2)). Further, we demonstrate proof-of-concept for the synthesis of an Ser-adenylylated peptide (Ac-GSGA-S(AMP)-AGSGC-NH(2)) from the corresponding adenylylated serine building block.  相似文献   

10.
The indole nucleus of Z-Trp-OBzl is modified by acylation of the indole nitrogen using Boc-N-methyl butyric acid followed by catalytic hydrogenation and introduction of the Fmoc group. The resulting derivative, Fmoc-Trp(Boc-Nmbu)-OH, is incorporated into peptide chains via solid-phase peptide synthesis (SPPS). After assembly of the peptide chain, the Boc group is cleaved by treatment with TFA. The peptide is isolated with the tryptophan residue modified with a cationic 4-(N-methylamino) butanoyl group, which improves the solubility of the peptide during HPLC purification. On treatment of the purified peptide at pH 9.5, the Nmbu group undergoes an intramolecular cyclization reaction; this results in the fully deprotected peptide and N-methylpyrrolidone.  相似文献   

11.
The efficient Fmoc solid-phase peptide synthesis of the 37-residue human Amylin and its amyloidogenic 8-37 fragment was achieved using pseudoproline (oxazolidine) dipeptide derivatives. Syntheses of hAmylin(8-37) using Fmoc amino acids produced only traces of the desired peptide. Incorporation of pseudoproline dipeptides produced the desired product with high yield and allowed for the synthesis of the full length peptide. The crude material was pure enough to allow formation of the Cys-2 to Cys-7 disulfide by air oxidation. [Structure: see text]  相似文献   

12.
[reaction: see text] Total chemical synthesis of proteins by chemoselective ligation relies on C-terminal peptide thioesters as building blocks. Their preparation by standard Fmoc solid-phase peptide synthesis is made difficult by the lability of thioesters to aminolysis by the secondary amines used for removal of the Fmoc group. Here we present a novel backbone amide linker (BAL) strategy for their synthesis in which the thioester functionality is masked as a trithioortho ester throughout the synthesis.  相似文献   

13.
In solid-phase peptide synthesis using the Fmoc/tBu strategy (SPPS-Fmoc/tBu), an orthogonal protection scheme of amino acids is used; specifically, the alpha-amine group is protected by the 9-fluorenylmethyloxycarbonyl (Fmoc) group, which is removed by weak bases, while side chains are protected by groups that are acid labile. We demonstrated that hydrazine hydrate is an efficient reagent for eliminating the Fmoc group in SPPS-Fmoc/tBu. First, experimental conditions were established for Fmoc group removal from Fmoc-Val-OH in solution. It was determined that the Fmoc group was completely removed with 16% hydrazine hydrate in DMF after 60?min at rt. Second, SPPS-Fmoc/tBu using hydrazine hydrate for Fmoc group removal was standardized. The Fmoc group removal was completed using 16% hydrazine hydrate in DMF for 10?min at rt (twice). When the reaction of Fmoc group removal was microwave-assisted, the reaction only required 30?s to efficiently remove the Fmoc group in SPPS-Fmoc/tBu. The method reported here can be routinely used, and it is equivalent to conventional SPPS-Fmoc/tBu methodologies where 4-methylpiperidine or piperidine is used.  相似文献   

14.
The development of phenyldithioethyloxycarbonyl (Phdec) and 2-pyridyldithioethyloxycarbonyl (Pydec) protecting groups, which are thiol-labile urethanes, is described. These new disulfide-based protecting groups were introduced onto the epsilon-amino group of L-lysine; the resulting amino acid derivatives were easily converted into N alpha-Fmoc building blocks suitable for both solid- and solution-phase peptide synthesis. Model dipeptide(Ardec)s were prepared by using classical peptide couplings followed by standard deprotection protocols. They were used to optimize the conditions for complete thiolytic removal of the Ardec groups both in aqueous and organic media. Phdec and Pydec were found to be cleaved within 15 to 30 min under mild reducing conditions: i) by treatment with dithiothreitol or beta-mercaptoethanol in Tris.HCl buffer (pH 8.5-9.0) for deprotection in water and ii) by treatment with beta-mercaptoethanol and 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) in N-methylpyrrolidinone for deprotection in an organic medium. Successful solid-phase synthesis of hexapeptides Ac-Lys-Asp-Glu-Val-Asp-Lys(Ardec)-NH2 has clearly demonstrated the full orthogonality of these new amino protecting groups with Fmoc and Boc protections. The utility of the Ardec orthogonal deprotection strategy for site-specific chemical modification of peptides bearing several amino groups was illustrated firstly by the preparation of a fluorogenic substrate for caspase-3 protease containing the cyanine dyes Cy 3.0 and Cy 5.0 as FRET donor/acceptor pair, and by solid-phase synthesis of an hexapeptide bearing a single biotin reporter group.  相似文献   

15.
The Fmoc/t-Bu solid-phase synthesis of three difficult peptide sequences (a 9-mer, 15-mer, and 24-mer) was performed using N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole as coupling reagent on polystyrene, Tentagel, and ChemMatrix resins. In order to obtain an insight into the specific role of the elevated temperature and/or the electromagnetic field for peptide syntheses carried out using microwave irradiation, peptide couplings and Fmoc-deprotection steps were studied under microwave and conventionally heated conditions at the same temperature. While room temperature couplings/deprotections generally produced the difficult peptides in rather poor quality, excellent peptide purities were obtained using microwave heating at a temperature of 86 degrees C for both the coupling and deprotection steps in only 10 and 2.5 min reaction time, respectively. While for most amino acids no significant racemization was observed, the high coupling temperatures led to considerable levels of racemization for the sensitive amino acids His and Cys. It was demonstrated for all three peptide sequences that when performing the coupling/deprotection steps at the same reaction temperature using conventional heating, nearly identical results in terms of both peptide purity and racemization levels were obtained. It therefore appears that the main effect of microwave irradiation applied to solid-phase peptide synthesis is a purely thermal effect not related to the electromagnetic field.  相似文献   

16.
A general synthetic route to two DOTA-linked N-Fmoc amino acids (DOTA-F and DOTA-K) is described that allows insertion of DOTA at any endo-position within a peptide sequence. Three model pentapeptides were prepared to test the general utility of these derivatives in solid-phase peptide synthesis. Both DOTA derivatives reacted smoothly by means of standard HBTU activation chemistry to the point of insertion of the DOTA amino acid, but extension of the peptide chain beyond the DOTA-amino acid insertion required the use of pre-activated C-pentafluorophenyl ester N-alpha-Fmoc amino acids. Three Gal-80 binding peptides (12-mers) were then prepared by using this methodology with DOTA positioned either at the N terminus or at one of two different internal positions;the binding of the resulting GdDOTA-12-mers to Gal-80 were compared. The methodology described here allows versatile, controlled introduction of DOTA into any location within a peptide sequence. This provides a potential method for the screening of libraries of DOTA-linked peptides for optimal targeting properties.  相似文献   

17.
The synthesis of Fmoc-aminoacyl-N-ethyl-S-triphenylmethylcysteine, an N- to S-acyl migratory device for the preparation of peptide thioesters by Fmoc-SPPS (solid-phase peptide synthesis) is described. Condensation of Fmoc-aminoacyl pentafluorophenyl ester and N-ethyl-S-triphenylmethylcysteine was efficiently performed in the presence of HOOBt (3-hydroxy-3,4-dihydro-4-oxo-1,2,3-benzotriazine) in DMF. A small amount of diastereomer yielded during the reaction was easily separated by HPLC purification and the highly pure devices were obtained for most of the proteinogenic amino acids.  相似文献   

18.
[reactions: see text] An efficient and general solution-phase method for the site-specific N-methylation of peptides has been developed. This novel procedure involves synthesis of N-nosyl protected peptides and their subsequent N-methylation with diazomethane. Its efficiency was proved by the successful synthesis of various hindered oligopeptides containing N-methyl amino acid residues with excellent yield and purity. The method is particularly attractive in that the adopted conditions do not cause any detectable racemization of the peptide stereocenters and the process does not require chromatographic purification of the methylated products. A further advantage is the compatibility of this methodology with Fmoc solution-phase peptide synthesis.  相似文献   

19.
A general and robust method for the incorporation of aspartates with a thioacid side chain into peptides has been developed. Pseudoproline tripeptides served as building blocks for the efficient fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of thioacid-containing peptides. These peptides were readily converted to complex N-glycopeptides by using a fast and chemoselective one-pot deprotection/ligation procedure. Furthermore, a novel side reaction that can lead to site-selective peptide cleavage using thioacids (CUT) was discovered and studied in detail.  相似文献   

20.
A straightforward synthesis of orthogonally protected nucleoproline (Nup) amino acids and their coupling to oligomers are described. A key step is the attachment of alkynylated nucleobases to Fmoc‐protected 4‐azidoproline (Fmoc‐Azp‐OH) by a Cu‐catalyzed 1,3‐dipolar cycloaddition (‘click reaction’). The developed protocol allows preparation of the nucleoprolines in scales of >30 g. Solid‐phase peptide synthesis proved to be straightforward with these Nup amino acids. The resulting oligonucleoproline peptides adopt defined helices, are very well H2O soluble, and show comparable cell‐penetrating properties as recently reported α‐nucleoalanine peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号