首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first and second molal dissociation quotients of malonic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of malonic acid/bimalonate solutions was measured relative to a standard aqueous HCl solution from 0 to 100°C over 25° intervals at five ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and available literature data were treated in the all anionic form by a seven-term equation. This treatment yielded the following thermodynamic quantities for the first acid dissociation equilibrium at 25°C: logK 1a =-2.852±0.003, H 1a /o =0.1±0.3 kJ-mol–1, S 1a o =–54.4±1.0 J-mol–1-K–1, and C p,1a o =–185±20 J-mol–1-K–1. Measurements of the bimalonate/malonate system were made over the same intervals of temperature and ionic strength. A similar regression of the present and previously published equilibrium quotients using a seven-term equation yielded the following values for the second acid dissociation equilibrium at 25°C: logK2a=–5.697±0.001, H 2a o =–5.13±0.11 kJ-mol–1, S 2a o =–126.3±0.4 J-mol–1-K–1, and C p,2a o =–250+10 J-mol–1-K–1.Presented at the Second International Symposium on Chemistry in High Temperature Water, Provo, UT, August 1991.  相似文献   

2.
The first and second molal dissociation quotients of oxalic acid were measured potentiometrically in a concentration cell fitted with hydrogen electrodes. The emf of oxalic acid-bioxalate solutions was measured relative to an HCl standard solution from 25 to 125°C over 25o intervals at nine ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and available literature data were treated in the all anionic form by a five-term equation that yielded the following thermodynamic quantities at infinite dilution and 25°C: logK1a=–1.277±0.010, H 1a o =–4.1±1.1 kJ-mol–1, S 1a o =38±4 J-K–1-mol–1, and C p,1a o =–168±41 J-K–1-mol–1. Similar measurements of the bioxalate-oxalate system were made at 25o intervals from 0 to 175°C at seven ionic strengths from 0.1 to 5.0m. A similar regression of the experimentally-derived and published equilibrium quotients using a seven-term equation yielded the following values at infinite dilution and 25°C: logK2a=–4.275±0.006, H 2a o =–6.8±0.5 kJ-mol–1, S 2a o =–105±2 J-K–1-mol–1, and C p,2a o =–261±12 J-K–1-mol–1.  相似文献   

3.
The dissociation quotient of benzoic acid was determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of benzoic acid/benzoate solutions was measured relative to a standard aqueous HCl solution at seven temperatures from 5 to 250°C and at seven ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and selected literature data were fitted in the isocoulombic (all anionic) form by a six-term equation. This treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25°C and 1 bar: logKa=–4.206±0.006, H a o =0.3±0.3 kJ-mol–1, S a o =–79.6±1.0 J-mol–1-K–1, and C p;a o =–207±5 J-mol–1-K–1. A five-term equation derived to describe the dependence of the dissociation constant on solvent density is accurate to 250°C and 200 MPa.  相似文献   

4.
The dissociation quotients of formic acid were measured potentiometrically from 25 to 200°C in NaCl solutions at ionic strengths of 0.1, 0.3 1.0, 3.0, and 5.0 mol-kg–1. The experiments were carried out in a concentration cell with hydrogen electrodes. The resulting molal acid dissociation quotients for formic acid, as well as a set of infinite dilution literature values and a calorimetrically-determined enthalpy of reaction, were fitted by an empirical equation involving an extended Debye Hückel term and seven adjustable parameters involving functions of temperature and ionic strength. This regressional analysis yielded the following thermodynamic quantities for 25°C: logK=–3.755±0.002, Ho=–0.09±0.15 kJ-mol–1, So=–72.2±0.5 J-K–1-mol–1, and C p o =–147±4 J-K–1-mol–1. The isocoulombic form of the equilibrium constant is recommended for extrapolation to higher temperatures.  相似文献   

5.
The molal dissociation quotients of D-galacturonic acid were measured potentiometrically in a newly-designed, hydrogen-electrode concentration cell from 5 to 100°C at four ionic strengths ranging from 0.1 to 1.0 mol-kg–1 using sodium trifluoromethanesulfonate (NaF3CSO3) as the supporting electrolyte. These quotients were fitted in the all anionic (isocoulombic) form by an empirical equation incorporating three adjustable parameters. When combined with the known dissociation quotient for water in the same medium, this treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25°C and infinite dilution: log KH=–3.490±0.011, H H 0 =0.4±0.2 kJ-mol–1, S H 0 =–65±1 J-mol–1-K–1, and C p, H 0 =–231±8 J-mol–1-K–1. Comparisons are made with the corresponding results of a limited number of previous studies carried out near ambient conditions.  相似文献   

6.
Electrical conductance measurements of dilute (<0.1>–1) aqueous NaCl solutions were made primarily to quantify the degree of ion association which increases with increasing temperature and decreasing solvent density. These measurements were carried out at temperatures from 100 to 600°C and pressures up to 300 MPa with a modified version of the apparatus used previously in the high temperature study in this laboratory. Particular emphasis was placed on conditions close to the critical temperaturelpressure region of water, i.e., at 5° intervals from 370 to 400°C. The results verify previous findings that the limiting equivalent conductance Ao of NaCl increases linearly with decreasing density from 0.75 to 0.3 g-cm–1 and also with increasing temperature from 100 to 350°C. Above 350°C. Ao is virtually temperature independent. The logarithm of the molal association constant as calculated exclusively from the data400°C is represented as a function of temperature (Kelvin) and the logarithm of the density of water (g-cm–3) as follows:
  相似文献   

7.
The hydration number of α-alanine in aqueous urea solutions is greater than in aqueous NaCl solutions; the ratio of the hydration numbers increases from 0.2 (m = 1) to ≈2 (m = 6). Given the same partial volumes of water, the hydration numbers of α-alanine in the two systems are close to each other.  相似文献   

8.
The enthalpies of dilution for aqueous solutions of [Co(en)3]Cl3, where en=1,2-diaminoethane, have been measured at 25°C, and up to m=1 mol-kg–1, using a new large isoperibol calorimeter by the long-jump method. Relative apparent molar enthalpies L have been extracted as an empirical equation relating L and m. Comparison with other 31 and 13 aqueous systems confirms the previously suggested hydrophobic character of the [Co(en)3]3+ cation.  相似文献   

9.
The aqueous reaction, HNO3(aq)=H++NO 3 was studied as a function of ionic strength I at 250, 275, 300 and 319°C using a flow calorimeter and the equilibrium constant K and enthalpy change (H) at I=0 were determined. Using these experimental values, equations describing logK, H, the entropy change S and the heat capacity change C p of reaction at I=0 and temperatures from 250 to 319°C were derived. The increasing importance of ion association as temperature rises was discussed. The use of an equation containing identical numbers of positive and identical numbers of negative charges on both sides of the equal sign (isocoulombic reaction principle) was applied to the logK values reported here and to those determined by others. The resulting plot of logK for the isocoulombic reaction vs. 1/T was fairly linear which supports the postulate that the principle is a useful technique for the extrapolation of logK values from low to high temperatures.Presented at the Second International Symposium on Chemistry in High Temperature Water, Provo, UT, August 1991.  相似文献   

10.
The electrical conductances of dilute (0.001 to 0.1 mol-kg?1) aqueous sodium trifluoromethanesulfonate (NaCF3SO3) solutions have been measured from 0 to 450°C and pressures to 250 MPa. The limiting molar conductance $\Lambda _0 $ increases with increasing temperature from 0 to 300°C and decreasing density from 0.8 to 0.3 g-cm?3. Above 300°C, $\Lambda _0 $ is nearly temperature independent, but increases linearly with decreasing density. The logarithm of the molal association constant of NaCF3SO3 calculated at temperatures from 372 to 450°C is represented as a function of temperature (Kelvin) and density of water (g-cm?3) by $$\log K_m = 0.888 - 330.4/T - (12.83 - 5349/T)\log \rho _w $$ The relative strengths of NaCF3SO3 and NaCl are similar within the accuracy of the current measurements over the limited range of temperature and pressure that could be investigated here.  相似文献   

11.
Ternary mutual diffusion coefficients (D11, D22, D12 and D21) measured by the Taylor dispersion method are reported for aqueous solutions of {levodopa (l-dopa) + HCl} solutions at 25 °C and HCl concentrations up to 0.100 mol · dm−3. The coupled diffusion of l-dopa (1) and HCl (2) is significant, as indicated by large negative cross-diffusion coefficients. D21, for example, reaches values that are larger than D11, the main coefficient of l-dopa. Combined Fick and Nernst–Planck equations are used to analyze the proton coupled diffusion of l-dopa and HCl in terms of the binding of H+ ions to l-dopa and ion migration in the electric field generated by l-dopa and HCl concentration gradients.  相似文献   

12.
The heat of solution of GaCl3 and heats of dilution of single GaCl3 solutions in water and of mixed GaCl3−HCl solutions in HCl solutions (with a fixed HCl concentration of 0.1337 mol-kg−1 HCl) up to 4 mol-kg−1 GaCl3 were measured at 25°C. While in the acid solutions hydrolysis is suppressed to below 0.5% of total gallium concentration, the measurements in water allow evaluation of the effect of hydrolysis on the relative enthalpy. The Pitzer interaction model for excess properties of aqueous electrolytes was used to interpret the change in relative enthalpy with concentration. Pitzer parameters were derived by statistical inference using ridge regression. Their physical significance is supported by the heat of solution data. The measurements yield the following results for standard heats of formation and Pitzer parameters for the relative molar enthalpy at 25°C: With these parameters the overall variance in the partial molar heat of solution at infinite dilution, extrapolated from the present experiments, is minimized to 0.35 kJ2-mol−2, while the experimental apparent molar heats of dilution are reproduced on average within 2.7 kJ-mol−1.  相似文献   

13.
CsCl in nearly isodielectric aqueous mixtures with tetrahydrofuran, 1,2-dimethoxyethane and dioxane has been studied at temperatures between 0° and 35°C. The conductance data are analyzed for the limiting conductance 0 and the association constant K A by means of the Justice-Ebeling conductance equation. By application of the Bjerrum equation an apparent distance of closest approach á is evaluated. This parameter is generally close to the crystallographic radius, 35Å. The deviations are attributed to solvation effects and are interpreted in terms of the Friedman-Rasaiah-Gurney cosphere overlap model. The variations of the effect with temperature permits an evaluation of enthalpy and entropy solvation parameters.  相似文献   

14.
Relative densities of CaCl 2 (aq) with 0.22ml(mol-kg–1)6.150 were measured with vibrating- tube densimeters between 25 and 250°C and near 70 and 400 bars. Apparent molar volumes V calculated from the measured density differences were represented with the Pitzer ioninteraction treatment, with appropriate expressions chosen for the temperature and pressure dependence of the virial coefficients of the model. It was found that the partial molar volume at infinite dilution V o , and the second and third virial coefficients B V and C V , were necessary to represent V near the estimated experimental uncertainty. The ionic-strength dependent (1)v term in the B V coefficient was included in the fit. The representation for V has been integrated with respect to pressure to establish the pressure dependence of excess free energies over the temperature range studied. The volumetric data indicate that the logarithm of the mean ionic activity coefficient, ln ±(CaCl 2 ), increases by a maximum of 0.3 at 400 bars, 250°C, and 6 mol-kg–1 as compared with its value at saturation pressure.  相似文献   

15.
The limiting molar conductances Λ0 and ion association constants of dilute aqueous NaOH solutions (<0.01 mol-kg?1) were determined by electrical conductance measurements at temperatures from 100 to 600°C and pressures up to 300 MPa. The limiting molar conductances of NaOH(aq) were found to increase with increasing temperature up to 300°C and with decreasing water density ρw. At temperatures ≥400°C, and densities between 0.6 to 0.8 g-cm?3, Λ0 is nearly temperature-independent but increases linearly with decreasing density, and then decreases at densities <0.6 g-cm?3. This phenomenon is largely due to the breakdown of the hydrogen-bonded, structure of water. The molal association constants K Am for NaOH( aq ) increase with increasing temperature and decreasing density. The logarithm of the molal association constant can be represented as a function of temperature (Kelvin) and the logarithm of the density of water by $$\begin{gathered} log K_{Am} = 2.477 - 951.53/T - (9.307 \hfill \\ - 3482.8/T)log \rho _{w } (25 - 600^\circ C) \hfill \\ \end{gathered} $$ which includes selected data taken from the literature, or by $$\begin{gathered} log K_{Am} = 1.648 - 370.31/T - (13.215 \hfill \\ - 6300.5/T)log \rho _{w } (400 - 600^\circ C) \hfill \\ \end{gathered} $$ which is based solely on results from the present study over this temperature range (and to 300 MPa) where the measurements are most precise.  相似文献   

16.
Enthalpies of dilution H D of aqueous solutions of the transition metal chlorides CdCl2, CoCl2, CuCl2, MnCl2, and NiCl2 were measured from 1.0 molal to dilute solution at 25°C. The apparent molal enthalpy equations of Pitzer were then fit to the resulting H D data and the parameters for these equations are presented. The heat of dilution data for CdCl2 and CuCl2 were in good agreement with results by other workers.  相似文献   

17.
The kinetics of oxidation of thiocarbohydrazide in the free and zinc(Ⅱ)-bound states byacid bromate have been studied in aqueous and water-acetic acid(1:1,V/V)media under varyingconditions,both in the absence and presence of added bromide ion.The rates of oxidations show firstorder kinetics in[bromate]in all the cases,but exhibit different kinetic behaviour in[substrate]and[H~+].Oxidation of TCH in aqueous medium shows zero order in[TCH]and nearly second order in[H~+],while oxidation in aqueous acetic acid shows two ranges in[H~+].The rate shows first and fractionalorder kinetics in[TCH]in the first and second acid ranges.Kinetics observed in the presence of Br~-are similar to those observed for oxidation of TCH in second acid range.In addition,the reactionshows fractional order in[Br~-].Oxidation of TCH in Zn(Ⅱ)-bound state exhibits first order kinetics in[substrate]and second order in[H~+].Increase in ionic strength of the medium decreases the rate in allthe cases.Increase in acetic acid composition of the solvent increases the rate.Mechanisms consistentwith the observed results have been considered and the rate laws deduced.The rate limiting steps havebeen identified and the coefficients of these steps have been calculated at different temperatures.Therelated activation parameters have also been computed.The validity of the deduced rate laws has alsobeen tested by recalculating the rate constants from them as[TCH]and[H~+]are varied.  相似文献   

18.
19.
Specific heat capacities, apparent molar heat capacities, densities, and apparent molar volumes have been determined for cytosine, uracil, thymine, adenine, cytidine, 2-deoxycytidine, uridine, thymidine and adenosine at temperatures from 25°C to 55°C. The results of these measurements have been used to calculate for the first time, the thermodynamic quantities:C p,2 o , (C p,2 o /T)p, (2 C p,2 o T 2)p,V 2 o , (V 2 o /T)p, and (2 V 2 o /T 2)p. The-CH2-group contribution has been calculated at different temperatures. It has also been observed from the data for the nucleic acid bases and nucleosides that the additivity ruleC p,2 o (nucleoside)-C p,2 o (base) +C p,2 o (water)=C p,2 o (ribose) does not hold in these cases.  相似文献   

20.
The determination of the second dissociation constant of carbonic acid K 2 in 5, 15, and 25 mass% ethanol—water mixed solvents has been made using cell of the type:
at 5 to 45°C. From these data, thermodynamic quantities, dissociation enthalpy, and dissociation entropy were determined. The dependence of pK 2 on dielectric constant of the mixed solvents is discussed in term of the Beveridge model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号