首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

2.
Intramolecular metal-ligand OH/π (MLOH/π) and metal-ligand NH/π (MLNH/π) interactions in transition metal complexes between aqua or ammine ligand and ligand containing a C6-aromatic ring were investigated in crystal structures deposited in the Cambridge Structural Database (CSD). These intramolecular interactions appear in 38 structures with aqua ligand as the hydrogen atom donor and in 10 structures with ammine ligand as the hydrogen atom donor. Among all these complexes only one is negatively charged, 14 are positively charged and 33 are neutral indicating that the overall charge of the molecule has an influence on the XH/π (X = O or N) interactions. Energy estimated by DFT calculations is approximately 19 kJ mol−1 for the MLOH/π interactions and approximately 15 kJ mol−1 for the MLNH/π interactions. Dedicated to Professor Milan Melník on the occasion of his 70th birthday  相似文献   

3.
A series of mononuclear cis-diamineplatinum(II) pyrophosphato complexes containing ammine (am), trans-1,2-cyclohexanediamine (dach), and 1,2-ethanediamine (en) as the amine ligands were synthesized and characterized by (31)P and (195)Pt NMR spectroscopy. Chemical shifts of (31)P NMR resonances of these completely deprotonated complexes appear at 2.12, 1.78, and 1.93 ppm, indicating a coordination chemical shift of at least 8 ppm. The (195)Pt NMR chemical shifts for the am and dach complexes were observed at -1503 and -1729 ppm. The complexes are highly stable at neutral pH; no aquation due to the release of either phosphate or amine ligands was observed within 48 h. Furthermore, no partial deligation of the pyrophosphate ligand was detected within several days at neutral pH. At lower pH, however, release of a pyrophosphate ion was observed with concomitant formation of a bridged pyrophosphatoplatinum(II) dinuclear complex. The extended crystal structure containing the dach ligand revealed a zigzag chain stacked in a head-to-tail fashion. Moreover, two zigzag chains are juxtaposed in a parallel fashion and supported by additional hydrogen bonds reminiscent of DNA structures where two strands of DNA bases are held by hydrogen bonds. Theoretical calculations support the notion that the two dinuclear units are held together primarily by hydrogen bonds between the amine and phosphate moieties. Platinum(II) pyrophosphato complexes were readily oxidized by hydrogen peroxide to yield cis-diamine-trans-dihydroxopyrophosphatoplatinum(IV) complexes. Two of these complexes, containing am and en, were characterized by X-ray crystallography. Notable structural features include Pt-O (phosphate) bond distances of 2.021-2.086 A and departures from 180 degrees in trans-HO-Pt-OH bond angles, >90 degrees in O-Pt-O, and >90 degrees in cis-N-Pt-N bond angles. The departure in the trans-HO-Pt-OH angle is more pronounced in the 1,2-ethanediamine complex compared to the dach analogue because of the existence of two molecules possessing enantiomeric conformations within the asymmetric unit. (31)P NMR spectra exhibited well-resolved (195)Pt satellites with coupling constants of 15.4 Hz for the ammine and 25.9 Hz for both the 1,2-ethanediamine and trans-1,2-cyclohexanediamine complexes. The (195)Pt NMR spectrum of the ammine complex clearly showed coupling with two equivalent N atoms.  相似文献   

4.
Four mononuclear Cu(I) complexes of 2-(2'-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh(3), bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh(3))(2)][BF(4)] (1), [Cu(pbb)(dppe)][BF(4)] (2), [Cu(pbb)(DPEphos)][BF(4)] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P-Cu-P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV-vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 micros). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2'-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes.  相似文献   

5.
Density functional theory (DFT) calculations have been carried out for a series of Cu(I) complexes bearing N-hexadentate macrocyclic dinucleating ligands and for their corresponding peroxo species (1c-8c) generated by their interaction with molecular O2. For complexes 1c-7c, it has been found that the side-on peroxodicopper(II) is the favored structure with regard to the bis(mu-oxo)dicopper(III). For those complexes, the singlet state has also been shown to be more stable than the triplet state. In the case of 8c, the most favored structure is the trans-1,2-peroxodicopper(II) because of the para substitution and the steric encumbrance produced by the methylation of the N atoms. Cu(II) complexes 4e, 5e, and 8e have been obtained by O2 oxidation of their corresponding Cu(I) complexes and structurally and magnetically characterized. X-ray single-crystal structures for those complexes have been solved, and they show three completely different types of Cu(II)2 structures: (a) For 4e, the Cu(II) centers are bridged by a phenolate group and an external hydroxide ligand. The phenolate group is generated from the evolution of 4c via intramolecular arene hydroxylation. (b) For 5e, the two Cu(II) centers are bridged by two hydroxide ligands. (c) For the 8e case, the Cu(II) centers are ligated to terminally bound hydroxide ligands, rare because of its tendency to bridge. The evolution of complexes 1c-8c toward their oxidized species has also been rationalized by DFT calculations based mainly on their structure and electrophilicity. The structural diversity of the oxidized species is also responsible for a variety of magnetic behavior: (a) strong antiferromagnetic (AF) coupling with J = -482.0 cm(-1) (g = 2.30; rho = 0.032; R = 5.6 x 10(-3)) for 4e; (b) AF coupling with J = -286.3 cm(-1) (g = 2.07; rho = 0.064; R = 2.6 x 10(-3)) for 5e; (c) an uncoupled Cu(II)2 complex for 8e.  相似文献   

6.
Histamine-copper(II) complexes have been studied using experimental methods and density functional theory. Preferred coordination centres and possible structures of aqua complexes have been determined. On the basis of equilibrium and spectroscopic studies the endocyclic nitrogen atom has been confirmed to as a coordinating centre in the CuH(Hist), Cu(Hist) and Cu(Hist)(OH) complexes. The involvement of the amino group linked to the aliphatic chain in the Cu(II) coordination has been additionally proven by the detection of the Cu(Hist) and Cu(Hist)(OH) complexes. The computed stabilisation energies demonstrate that the Cu(H2O)4(Hist) and Cu(OH)(Hist)(H2O)3 chelates as well as the CuH(H2O)5(Hist) compounds are the most energetically stable in the media studied. The most stable conformers of the neutral form of the histamine molecule are in the Cu(Hist) and Cu(Hist)(OH) species. These complexes have a gauche structure stabilized by an intramolecular hydrogen bond. The electronic Jahn-Teller effect is mainly responsible for the tetragonal distortion of the octahedral MHL-(H2O)5 complex. Strong electrostatic interactions and polarisation effects contribute to the enhanced stability for all of the complexes studied. The results of the computations confirm that histamine is effective in coordinating to the Cu(II) ions in biological systems. The theoretical results fully confirm the coordination modes proposed in the experiment and predict the most reliable geometry and energetic stability of the aqua complexes.  相似文献   

7.
The electron-transfer kinetics for each of three copper(II/I) tripodal ligand complexes reacting with multiple reducing and oxidizing counter reagents have been examined in aqueous solution at 25 degrees C, mu = 0.10 M. For all of the ligands studied, an amine nitrogen serves as the bridgehead atom. Two of the ligands (PMMEA and PEMEA) contain two thioether sulfurs and one pyridyl nitrogen as donor atoms on the appended legs while the third ligand (BPEMEA) has two pyridyl nitrogens and one thioether sulfur. Very limited kinetic studies were also conducted on two additional closely related tripodal ligand complexes. The results are compared to our previous kinetic study on a Cu(II/I) system involving a tripodal ligand (TMMEA) with thioether sulfur donor atoms on all three legs. In all systems, the Cu(II/I) electron self-exchange rate constants (k(11)) are surprisingly small, ranging approximately 0.03-50 M(-)(1) s(-)(1). The results are consistent with earlier studies reported by Yandell involving the reduction of Cu(II) complexes with four similar tripodal ligand systems, and it is concluded that the dominant reaction pathway involves a metastable Cu(II)L intermediate species (designated as pathway B). Since crystal structures suggest that the ligand reorganization accompanying electron transfer is relatively small compared to our earlier studies on macrocyclic ligand complexes of Cu(II/I), it is unclear why the k(11) values for the tripodal ligand systems are of such small magnitude.  相似文献   

8.
A series of FL(n) (n = 1-5) ligands, where FL(n) is a fluorescein modified with a functionalized 8-aminoquinoline group as a copper-binding moiety, were synthesized, and the chemical and photophysical properties of the free ligands and their copper complexes were investigated. UV-visible spectroscopy revealed a 1:1 binding stoichiometry for the Cu(II) complexes of FL(1), FL(3), and FL(5) in pH 7.0 buffered aqueous solutions. The reactions of FL(2) or FL(4) with CuCl(2), however, appear to produce a mixture of 1:1 and 1:2 complexes, as suggested by Job's plots. These binding modes were modeled by the synthesis and X-ray crystal structure determination of Cu(II) complexes of 2-[(quinolin-8-ylamino)methyl]phenol (modL), employed as a surrogate of the FL(n) ligand family. Two kinds of crystals, [Cu(modL)(2)](BF(4))(2) and [Cu(2)(modL')(2)(CH(3)OH)](BF(4))(2) (modL' = 2-[(quinolin-8-ylamino)methyl]phenolate), were obtained. The structures suggest that one oxygen and two nitrogen atoms of the FL(n) ligands most likely bind to Cu(II). Introduction of nitric oxide (NO) to pH 7.0 buffered aqueous solutions of Cu(FL(n)) (1 microM CuCl(2) and 1 microM FL(n)) at 37 degrees C induces an increase in fluorescence. The fluorescence response of Cu(FL(n)) to NO is direct and specific, which is a significant improvement over commercially available small molecule-based probes that are capable of detecting NO only indirectly. The NO-triggered fluorescence increase of Cu(FL(5)) occurs by reduction of Cu(II) to Cu(I) with concomitant dissociation of the N-nitrosated fluorophore ligand from copper. Spectroscopic and product analyses of the reaction of the FL(5) copper complex with NO indicated that the N-nitrosated fluorescein ligand (FL(5)-NO) is the species responsible for fluorescence turn-on. Density functional theory (DFT) calculations of FL(5) versus FL(5)-NO reveal how N-nitrosation of the fluorophore ligand brings about the fluorescence increase. The copper-based probes described in the present work form the basis for real-time detection of nitric oxide production in living cells.  相似文献   

9.
Two series of new binuclear complexes with Schiff base ligands, H(4)L(a) or H(2)L(b), derived from the reaction of 4,6-diacetylresorcinol and ethylenediamine, in the molar ratio 1:1 and 1:2 have been prepared, respectively. The two ligands react with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Cr(III) and Fe(III)-nitrates to get binuclear complexes. The ligands were characterized by elemental analysis, IR, UV-vis, (1)H NMR and mass spectra. The complexes were synthesized by direct and template methods. Different types of products were obtained for the same ligand and metal salts according to the method of preparation. The H(4)L(a) ligand behaves as a macrocyclic tetrabasic with two N(2)O(2) sits, while the H(2)L(b) ligand behaves as a dibasic with two N(2)O sites. The H(4)L(a) ligand is a compartmental ligand which hosts the two metal ions at the centers of two cis-N(2)O(2) sites, while the metal complexes of H(2)L(b) ligand are binuclear, where the ligand hosts two metal ions at the centers of two N(2)O sites. In both cases, deprotonation of the hydrogen atoms of the phenolic OH groups occur except in the case of the Ni(II), Fe(III) and Cr(III) complexes. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either octahedral or tetrahedral. The structures are consistent with the IR, UV-vis, ESR, (1)H NMR, mass spectra, and thermal gravimetric analysis (TGA/DTA) as well as conductivity and magnetic moment measurements.  相似文献   

10.
The structures of 41 Ni(II) and 17 Cu(II) complexes of macrocyclic quadridentate ligands have been analyzed, and are discussed about bond lengths, bond angles, conformations, and configurations, upon which many conclusions are formed. The inter- or intra-molecular hydrogen bonds exist among ligands and hydrates in many compounds and play an important role in the structures. There are exhibited two distinct peaks on the histogram of the average Ni-N distances, corresponding to four coordination and six coordination; these average Ni-N distances are 1.95(4) Å and 2.10(5) Å, respectively. The most probable structures of Ni(II) macrocyclic compounds have coordination number six for the metal ion, chair forms for six-membered rings, planar structure for the metal ion and the four donor atoms of the quadridentate ligand and an inversion center at the central metal ion.  相似文献   

11.
The new ligands R,R-trans-S,S'-bis[methyl(2'-quinolyl)]-1,2-dithiacyclohexane, cis-S,S'-bis[methyl(2'-quinolyl)]-1,2-dithiacyclohexane, and 1,6-bis(2'-quinolyl)-2,5-dithiahexane have been synthesized and their complexes with Cu(I) and Cu(II) prepared. The ligand/metal systems are bistable, as the complexes with copper in both its oxidation states are stable under the same conditions as solids and in solution. The crystal and molecular structure of [Cu(I)(1,6-bis(2'-quinolyl)-2,5-dithiahexane)]ClO(4) has been determined by X-ray diffraction and reveals that the complex is monomeric, with the ligand folding around the Cu(+) cation, imparting to it a tetrahedral coordination. UV-vis, MS-ESI, and NMR data indicate that the same is found for the Cu(I) complexes of all three ligands. Also, the Cu(II) complexes are monomeric, but with a square arrangement of the ligands around Cu(2+). On changing the oxidation state, the change in the geometrical arrangement is fast and complete in less than 80 ms, as demonstrated by cyclic voltammetry experiments. In the CV profiles, the oxidation and reduction events take place at separated E(ox) and E(red) values, with no return wave even at the fastest scan rates. In the E(ox)-E(red) interval (which ranges from 450 to 650 mV, depending on the ligand), the ligand/copper system can thus exist in one of its two states, depending on its history, and thus display electrochemical hysteretical behavior. The electrochemical cycle leading from the tetrahedral [Cu(I)(ligand)](+) to the square [Cu(II)(ligand)](2+) complex (and vice versa) is reversible and repeatable without degradation, as checked by coupled UV-vis-controlled potential coulometry experiments.  相似文献   

12.
Two copper(II) complexes with the general formula [Cu(L)(H2O)](ClO4)2 (1) and [Cu(L)2](ClO4)2 (2), where L=3-((pyridin-2-ylmethyl)amino)propanamide, were synthesized and characterized by elemental analyses, IR, UV–vis spectroscopy techniques and molar conductance measurements. The crystal structures of the complexes were identified by single crystal X-ray diffraction analysis. The tridentate ligand L acts as an N2O-donor through the nitrogen atoms of the pyridine and amine moieties as well the oxygen atom of the amide group. The copper(II) ions in both complexes have distorted octahedron structures so that the Cu(II) ion in 1 is coordinated by an aqua ligand and a tridentate ligand defining the basal plane, and by two oxygen atoms of the perchlorate ions occupying the axial positions. However, two ligands L are coordinated to the copper(II) ion in 2, where four nitrogen atoms of pyridine and amine groups occupy the equatorial positions and two oxygen atoms of the amide moieties exist in the apices. The chromotropism (halo-, solvato- and ionochromism) of both complexes were studied using visible absorption spectroscopy. The complexes are soluble in water and organic solvents and display reversible halochromism. The solvatochromism property is due to structural change followed by solvation of the vacant sites of the complexes. The complexes demonstrated obvious ionochromism and are highly sensitive and selective towards CN? and N3? anions in the presence of other halide and pseudo-halide ions.  相似文献   

13.
Copper(I) complexes with tripodal nitrogen-containing neutral ligands such as tris(3,5-diisopropyl-1-pyrazolyl)methane (L1') and tris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3'), and with corresponding anionic ligands such as hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (L1-) and hydrotris(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)borate (L3-) were synthesized and structurally characterized. Copper(I) complexes [Cu(L1')Cl] (1), [Cu(L1')(OClO3)] (2), [Cu(L1')(NCMe)](PF6) (3a), [Cu(L1')(NCMe)](ClO4) (3b), [Cu(L1')(CO)](PF6) (4a), and [Cu(L1')(CO)](ClO4) (4b) were prepared using the ligand L1'. Copper(I) complexes [Cu(L3')Cl] (5) and [Cu(L3')(NCMe)](PF6) (6) with the ligand L3' were also synthesized. Copper(I) complexes [Cu(L1)(NCMe)] (7) and [Cu(L1)(CO)] (8) were prepared using the anionic ligand L1-. Finally, copper(I) complexes with anionic ligand L3- and acetonitrile (9) and carbon monoxide (10) were synthesized. The complexes obtained were fully characterized by IR, far-IR, 1H NMR, and 13C NMR spectroscopy. The structures of both ligands, L1' and L3', and of complexes 1, 2, 3a, 3b, 4a, 4b, 5, 6, 7, and 10 were determined by X-ray crystallography. The effects of the differences in (a) the fourth ligand and the counteranion, (b) the steric hindrance at the third position of the pyrazolyl rings, and most importantly, (c) the charge of the N3 type ligands, on the structures, spectroscopic properties, and reactivities of the copper(I) complexes are discussed. The observed differences in the reactivities toward O2 of the copper(I) acetonitrile complexes are traced back to differences in the oxidation potentials determined by cyclic voltammetry. A special focus is set on the carbonyl complexes, where the 13C NMR and vibrational data are presented. Density functional theory (DFT) calculations are used to shed light on the differences in CO bonding in the compounds with neutral and anionic N3 ligands. In correlation with the vibrational and electrochemical data of these complexes, it is demonstrated that the C-O stretching vibration is a sensitive probe for the "electron richness" of copper(I) in these compounds.  相似文献   

14.
Mixed-ligand Cu(II) complexes with deprotonated trimesic acid and phenanthroline-type ligands were synthesised by solvothermal methods to form 2-D infinite hexagonal hydrogen bonded structures with additional trimesic acid (H3tma) molecules. The complex [Cu(phendione)2(H2tma)2].2(H3tma).1.65(CF3CH2OH).2.5(H2O), where phendione = 1,10-phenanthroline-5,6-dione, has hydrogen bonded networks of [Cu(phendione)2(H2tma)2] complexes interspersed with layers of H3tma with a topologically identical hydrogen bonding network. Whereas in [Cu(1,10-phenanthroline)(H2tma)2]2.2(H3tma), a dimeric Cu(II) complex hydrogen bonds directly to additional H3tma molecules to form a three-layered 2-D network resembling an infinite sandwich. The synthesis and structures of simple Cu(II) complexes of the phendione ligand are also reported. One of these, [Cu(phendione)2Br2] shows a particularly polar packing arrangement.  相似文献   

15.
The coordination mode of the dimethylmalonate ligand in the two title CuII complexes, {[Cu(C5H3O4)(H2O)]·H2O}n, (I), and [Cu(C5H3O4)(H2O)]n, (II), is the same, with chelated six‐membered, bis‐monodentate and bridging bonding modes. However, the coordination environment of the CuII atoms, the connectivity of their metal–organic frameworks and their hydrogen‐bonding interactions are different. Complex (I) has a perfect square‐pyramidal CuII environment with the aqua ligand in the apical position, and only one type of square grid consisting of CuII atoms linked via carboxylate bridges to three dimethylmalonate ligands, with weak hydrogen‐bond interactions within and between its two‐dimensional layers. Complex (II) has a coordination geometry that is closer to square pyramidal than trigonal bipyramidal for its CuII atoms with the aqua ligand now in the basal plane. Its two‐dimensional layer structure comprises two alternating grids, which involve two and four different dimethylmalonate anions, respectively. There are strong hydrogen bonds only within its layers.  相似文献   

16.
Wu G  Wang XF  Okamura TA  Sun WY  Ueyama N 《Inorganic chemistry》2006,45(21):8523-8532
Seven coordination compounds, [Zn(L3)Cl2] . MeOH . H2O (1), [Mn(L3)2Cl2] . 0.5EtOH . 0.5H2O (2), [Cu3(L2)2Cl6] . 2DMF (3), [Cu3(L2)2Br6] . 4MeOH (4), [Hg2(L4)Cl4] (5), [Hg2(L4)Br4] (6), and [Hg3(L4)2I6] . H2O (7), were synthesized by the reactions of ligands 1,3,5-tris(3-pyridylmethoxyl)benzene (L3), 1,3,5-tris(2-pyridylmethoxyl)benzene (L2), and 1,3,5-tris(4-pyridylmethoxyl)benzene (L4) with the corresponding metal halides. All the structures were established by single-crystal X-ray diffraction analysis. In complexes 1 and 2, L3 acts as a bidentate ligand using two of three pyridyl arms to link two metal atoms to result in two different 1D chain structures. In complexes 3 and 4, each L2 serves as tridentate ligand and connects three Cu(II) atoms to form a 2D network structure. Complexes 5 and 6 have the same framework structure, and L4 acts as a three-connecting ligand to connect Hg(II) atoms to generate a 3D 4-fold interpenetrated framework, while the structure of complex 7 is an infinite 1D chain. The results indicate that the flexible ligands can adopt different conformations and thus can form complexes with varied structures. In addition, the coordination geometry of the metal atom and the species of the halide were found to have great impact on the structure of the complexes. The photoluminescence properties of the complexes were investigated, and the Zn(II), Mn(II) and Hg(II) complexes showed blue emissions in solid state at room temperature.  相似文献   

17.
Cobalt(II) and copper(II) complexes with deprotonated N-[2′-(4-methyl)pyrimidinyl]-2-nitrobenzenesulfonylurea were synthesized and their structures were characterized by IR spectrum, elemental analysis and X-ray diffraction. The deprotonated sulfonylurea is a bidentate ligand to Co(II) or Cu(II) in octahedral geometry. In the packing diagrams of the complexes, C–H ··· O hydrogen bonds are observed. The UV and fluorescence spectra of the complexes are described, and the thermogravimetric analyses of the complexes were performed.  相似文献   

18.

The novel transition metal saccharinato complexes of N-(2-hydroxyethyl)-ethylendiamine (HydEt-en) have been synthesized and characterized by elemental analyses, magnetic moments, UV-Vis and IR spectra. Coordination behaviour of HydEt-en has been studied. The Mn(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) form mononuclear complexes, while the Fe(II) and Co(II) complexes are dimeric. The crystal structures of the [Cu(sac)2(HydEt-en)2] and [Cd(sac)2(HydEt-en)2] complexes, where sac is the deprotonated form of saccharin, were determined by x-ray diffraction. The metal ions are octahedrally coordinated by these ligands. The amine ligand acts as a bidentate N-donor ligand and its ethanol group is not involved in coordination. The sac ions coordinate through the deprotonated N as a monodentate ligand. The NH and OH groups of the amine ligand are involved in intra- and intermolecular hydrogen bonding with the carbonyl and sulphonyl oxygens of the sac ions to form a three-dimensional infinite network.  相似文献   

19.
The two ethylene bridges in the macrocyclic tetrathiaether 1,4,8,11-tetrathiacyclotetradecane ([14]aneS(4)) have been systematically replaced by cis- or trans-1,2-cyclopentane to generate a series of new ligands that exhibit differing preferences for the orientation of the sulfur donor atoms while maintaining constant inductive effects. The resulting five dicyclopentanediyl derivatives, along with two previously synthesized monocyclopentanediyl analogues, have been complexed with Cu(II), and their stability constants, formation and dissociation rate constants, and redox potentials have been determined in 80% methanol/20% water (by weight). The crystal structures of the Cu(II) complexes with the five dicyclopentanediyl-[14]aneS(4) diastereomers as well as the structures for a representative Cu(I) complex and one of the free ligands have also been determined. The properties of these complexes are compared to previous data obtained for the corresponding cyclohexanediyl derivatives in an attempt to shed additional light on the influence of sterically constraining substituents upon the properties of macrocyclic ligand complexes.  相似文献   

20.
Yang L  Houser RP 《Inorganic chemistry》2006,45(23):9416-9422
Copper(I) chloro complexes were synthesized with a family of ligands, HL(R) [HL(R) = N-(2-pyridylmethyl)acetamide, R = null; 2-phenyl-N-(2-pyridylmethyl)acetamide, R = Ph; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me3; 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph3)]. Five complexes were synthesized from the respective ligand and cuprous chloride: [Cu(HL)Cl]n (1), [Cu2(HL)4Cl2] (2), [Cu2(HL(Ph))2(CH3CN)2Cl2] (3), [Cu2(HL(Ph)3)2Cl2] (4), and [Cu(HL(Me)3)2Cl] (5). X-ray crystal structures reveal that for all complexes the ligands coordinate to the Cu in a monodentate fashion, and inter- or intramolecular hydrogen-bonding interactions formed between the amide NH group and either amide C=O or chloro groups stabilize these complexes in the solid state and strongly influence the structures formed. Complexes 1-5 display a range of structural motifs, depending on the size of the ligand substituent groups, hydrogen bonding, and the stoichiometry of the starting materials, including a one-dimensional coordination polymer chain (1) and binuclear (2-4) or mononuclear (5) structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号