首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ‘S’ conformation, stabilized by intramolecular C? H···π interactions, is found in centrosymmetric p‐(Cl2PhSnCH2CH2)2C6H4. The dinuclear species features distorted tetrahedral tin centres, with the greatest distortion manifested in the C? Sn? C angle of 134.32(16) °. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The dinuclear molecule of p‐(Ph3SnCH2SiMe2)2C6H4 adopts an ‘S’ conformation in the solid state, which is stabilized by C? H···π interactions. Distorted tetrahedra defined by C4 donor sets are found for the tin atoms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The nitrate anion coordinates to the Sn? CH2? Sn unit of the title phosphonium stannate, [Ph4P]+ [(Ph2ClSn)2CH2 ·NO3]?, to give a six‐membered ring having the penta‐coordinated tin atoms in a trigonal bipyramidal geometry. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Low-temperature heat capacities of the compound Ni(C4H7O5)2·2H2O(S) have been measured with an auto- mated adiabatic calorimeter. A thermal decomposition or dehydration occurred in 350--369 K. The temperature, the enthalpy and entropy of the dehydration were determined to be (368.141 ±0.095) K, (18.809±0.088) kJ·mol ^-1 and (51.093±0.239) J·K^-1·mol^-1 respertively. The experimental values of the molar heat capacities in the temperature regions of 78-350 and 368-390 K were fitted to two polynomial equations of heat capacities (Cp,m) with the reduced temperatures (X), [X=f(T)], by a least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound were calculated on the basis of the fitted polynomials. The smoothed values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were tabulated with an interval of 5 K.  相似文献   

5.
Two new salts of the cation [CuI(dmp)2]+ (dmp is 2,9‐dimeth­yl‐1,10‐phenanthroline, C14H12N2), namely bis­[bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I)] bis­(hexa­fluorophos­phate) hemi[bis­(4‐pyridylmethyl­idene)hydrazine] acetonitrile solvate, [Cu(C14H12N2)2]2(PF6)2·0.5C12H10N4·C2H3N or [Cu(dmp)2]2(PF6)2·0.5(bpmh)·CH3CN [bpmh is bis­(4‐pyridylmethyl­idene)hydrazine, C12H10N4], (I), and bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I) dicyanamide, [Cu(C14H12N2)2](C2N3) or [Cu(dmp)2][N(CN)2], (II), are reported. The Cu—N bond lengths and the distortion from idealized tetra­hedral geometry of the dmp ligands are discussed and compared with related compounds. The bpmh molecule in (I) is π–π stacked with a dmp ligand at a distance of 3.4 Å, rather than coordinated to the metal atom. The molecule lies across an inversion center in the crystal. In (II), the normally coordinated dicyanamide mol­ecule is present as an uncoordinated counter‐ion.  相似文献   

6.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

7.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

8.
Two new transition metal(II) complexes [M(hdpa)2(N(CN)2)2] (M = Mn ( 1 ), Co ( 2 ); hdpa = 2, 2'‐dipyridylamine) have been prepared and characterized structurally and magnetically. Both compounds crystallize in the monoclinic space group C2/c. 1 and 2 are isotypic with the unit cell parameters a = 8.634(9), b = 13.541(14), c = 21.99(2) Å, β = 94.806(18)°, and V = 2562(5) Å3 for 1 , a = 8.617(3) Å, b = 13.629(5)Å, c = 21.598(8)Å, β = 94.593(6)°, and V = 2528.4(15)Å3 for 2 , and Z = 4 for both. According to X‐ray crystallographic studies, each metal(II) ion was six‐coordinated with four nitrogen atoms from two bidentate hdpa ligand and two nitrogen atoms from two N(CN) anions to form slightly distorted octahedrons. Adjacent complex molecules are connected by hydrogen bonds or π···π interactions to form three‐dimensional network. The IR and UV spectroscopy were measured and the magnetic behaviors were investigated.  相似文献   

9.
合成了两个新的配合物CuLCl2•2EtOH(1) 和CoLCl2 (2) [L是( S , S )-1,2-二N-甲基苯并咪唑-1,2-二甲氧基-乙烷],并通过单晶X衍射确定它们的结构。配合物1中,L作为三齿[N, N, O]配体,而配合物2 中,L作为二齿[N, N]配体。这两个配合物共同的结构特点都是通过分子内氢键形成2维的格子结构,然后通过分子间的C-H···Cl型氢键和π–π堆积作用形成3维结构。  相似文献   

10.
正苯丙烷正离子的分解过程可以作为研究烷基苯正离子分解反应机理的原型。使用Gaussian98程序包,在B3LYP/6-311++G**基组水平上,C9H12+·分解反应系统的各反应被详细研究。用振动模式分析充分研究了各反应通道以确定过渡态,用电子布居分析讨论电子的分布并阐明反应机理。C9H12+·链反应可以由C-H键断裂而引发,但是有一个直接产生C8H9+ + CH3·的通道。  相似文献   

11.
Polysulfonylamines. CLX. Crystal Structures of Metal Di(methanesulfonyl)amides. 10. The Three‐Dimensional Coordination Polymers M[(CH3SO2)2N], where M is Potassium, Rubidium, Cesium (Isotypic Structures for M = K, Rb) Low‐temperature X‐ray crystal structures are reported for KA (monoclinic, space group P21/c, Z′ = 1), RbA (isotypic and isostructural with KA), and CsA (monoclinic, P21/n, Z′ = 1), where A denotes the anion obtained by deprotonation of the strong nitrogen acid (MeSO2)2NH. In KA and RbA, the anion is distorted into a rare C1 conformation, whereas the standard C2 conformation is retained in the cesium complex. The structures consist of three‐dimensional coordination networks, in which each cation adopts an irregular (O6N)‐heptacoordination by forming close contacts to one (O, N)‐chelating, one (O, O)‐chelating and three κ1O‐bonding ligands; however, the coordination number for Cs+ is effectively increased to 8 by a very short Cs···Cs contact distance of 422.5 pm. The crystal packings of the isotypic compounds KA and RbA display lamellar layer substructures that involve six independent ligand‐metal bonds and comprise an internal cation lamella and peripheral regions built up from anion monolayers; the 3D framework is completed by one independent M—O bond cross‐linking the layer substructures. In contrast, CsA features anion monolayers that intercalate planar zigzag chains of cations (Cs···Cs alternatingly 422.5 and 487.5 pm, Cs···Cs···Cs 135.7°), whereby each chain is surrounded and coordinated by four anion stacks and each anion stack connects two cation chains. All structures exhibit close C—H···A interanion contacts consistent with weak hydrogen bonding.  相似文献   

12.
The title compounds are diastereoisomers with antipodean axial chirality. The M isomer crystallizes as a (1/3) acetone solvate, C32H30NO+·Br?·3C3H6O, while the P isomer crystallizes as a (1/1) di­chloro­methane solvate, C32H30NO+·Br?·CH2Cl2. In each structure, O—H?Br hydrogen bonds link the cations and anions to give ion pairs. The seven‐membered azepinium ring adopts the usual twisted‐boat conformation and its ring strain causes a slight curvature of the plane of each naphthyl ring.  相似文献   

13.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

14.
The reaction of [1,3‐bis(2‐ethoxy)benzene]triazene, [ HL ], with Hg(SCN)2 and Hg(CH3COO)2, resulted in the formation of the complexes [Hg L (SCN)] ( 1 ) and [Hg L 2] · CH3OH ( 2 ). They were characterized by means of X‐ray crystallography, CHN analysis, FT‐IR, 1H NMR, and 13C NMR spectroscopy. The structure of compound 1 consists of two independent complexes in which the HgII atoms are stacked along the crystallographic a axis to form infinite chains. Each HgII atom is chelated by one L ligand and one SCN ligand, whereas in compound 2 , the HgII atom is surrounded by two L ligands. In addition, 1D chains formed by metal–π interactions are connected to each other by C–H ··· π stacking interactions in the structure of 1 , which results in a 2D architecture. An interesting feature of compound 2 is the presence of C–H ··· π edge‐to‐face interactions.  相似文献   

15.
(Zn1-xMnx)C2O4·2H2O在空气中的热分解动力学研究   总被引:1,自引:0,他引:1  
用热分析(TG-DTG/DTA)、X射线衍射(XRD)技术和透射电镜(TEM)研究了固态物质Zn1-xMnxC2O4•2H2O在空气中热分解的过程。热分析结果表明,Zn1-xMnxC2O4•2H2O在空气中分两步分解,其失重率与理论计算失重率相吻合。 XRD和TEM结果表明,Zn1-xMnxC2O4•2H2O分解的最终产物为Zn1-xMnxO,其颗粒大小约为10-13 nm。在非等温条件下对Zn1-xMnxC2O4•2H2O的热分解动力学进行了分析。用Friedman法和Flynn-Wall-Ozawa(FWO)法求取了分解过程的活化能E,并用多元线性回归给出了可能的机理函数。Zn1-xMnxC2O4•2H2O两步热分解的活化能分别为155.7513 kJ/mol 和215.9397 kJ/mol。  相似文献   

16.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Cis‐[Zn(3,5‐dinitrobenzoato)2(1,10‐phenanthroline)2]·CH3CH2OH features unidentate and cis‐disposed 3,5‐dinitrobenzoate ligands and chelating 1,10‐phenanthroline ligands so that a distorted octahedral N4O2 coordination geometry results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The equilibrium solubility of CsCl-CeCl3-HCl(11%)-H2O qua-ternary system at 25℃ has been determined by the physicchemical analysis method ,and the phase diagram was plotted, Two new double salts 3CsCl.CeCl3.3H2O and CsCl.CeCl3.4H2O obtained from the complicated system were identified and characterized by XRD,TG-DTA ,DSC,UV and fluorescence spectroscopy, Studies on the fluorescence excitation and emission show that 3CsCl.CeCl3.3H2O and CsCl.CeCl3.4H2O have upconversion luminescence of infrared-visible range,and the upconversion emission intensity increases with the increase of ratio of CeCl3 in CsCl.  相似文献   

19.
Polysulfonylamines. CLVIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 9. Enhancing Crystal Symmetry by Co‐crystallization: Monoclinic Na[(CH3SO2)2N]·H2O and Tetragonal NaK[(CH3SO2)2N]2·2H2O The three‐dimensional coordination polymers NaA·H2O ( 1 ) and NaKA2·2H2O ( 2 ), derived from the strong NH acid (MeSO2)2NH = HA, have been characterized by single crystal X‐ray diffraction at —95 °C ( 1 : monoclinic, space group C2/c, Z′ = 2; 2 : tetragonal, P43212, Z′ = 1). The results suggest that structures with Z′ > 1 are good candidates for co‐crystallization experiments. Both packings display layer substructures built up from the multidentately coordinating anions, the aquo ligands and two kinds of chemically and/or crystallographically distinct cations, whereas cations of a third type are intercalated between the layers. All anions have the extended standard conformation of this species; 1 contains two pseudo‐C2 symmetric A, 2 one pseudo‐C2 and two crystallographically C2 symmetric A. Details for structure 1 : a) The layer‐forming Na(1) and Na(3) cations are distributed over three distinctly separated planes, Na(1) occupies general positions and has a non‐octahedral O5N environment, Na(3) resides on inversion centres that generate an octahedral O6 coordination; b) one independent A is oriented vertically, the other parallel to the layer plane; c) the intercalated Na(2) ions occupy twofold rotation axes within a single plane and possess a non‐octahedral O6 environment. Details for structure 2 : a) The layer‐forming K(1) and K(2) cations occupy twofold rotation axes within a unique plane and have chemically identically O6N2 coordination polyhedra approximating to hexagonal bipyramids; b) all A are oriented vertically to the layer plane; c) the intercalated sodium ions reside on pseudo‐inversion centres, have an octahedral O6 environment and are distributed over two closely adjacent planes. Owing to the enhanced packing efficiency of the bimetal complex, the vertical layer repeat‐distance is reduced from 1140 pm for 1 to 720 pm for 2 . Each structure exhibits an infinite cation‐water chain that propagates in the direction of the layer stacking and contains the three independent cations.  相似文献   

20.
Each of the title compounds, 8‐methoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane hemisolvate, [Pt(CH14B10O)(C18H15P)2]·0.5CH2Cl2, (I), 8‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (II), and 9‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (III), has an 11‐vertex nido polyhedral skeleton, with the 7‐platinum centre ligating to two exo‐polyhedral PPh3 groups and an alkoxy‐substituted polyhedral borane ligand. Compounds (II) and (III) are isomers. The Pt—B distances are in the range 2.214 (7)–2.303 (7) Å for (I), 2.178 (16)–2.326 (16) Å for (II) and 2.205 (6)–2.327 (6) Å for (III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号