首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many theories of quantum gravity, depending on asymptotic boundary conditions, and the amount of supersymmetry. The cosmological constant is one of the fundamental parameters that characterizes different theories. If it is positive, supersymmetry must be broken. A heuristic calculation shows that a cosmological constant of the observed size predicts superpartners in the TeV range. This mechanism for SUSY breaking also puts important constraints on low energy particle physics models.  相似文献   

2.
    
We elaborate on the predictions of the imaginary Starobinsky model of inflation coupled to matter, where the inflaton is identified with the imaginary part of the inflaton multiplet suggested by the Supergravity embedding of a pure gravity. In particular, we study the impact of higher‐order curvature terms and show that, depending on the parameter range, one may find either a quadratic model of chaotic inflation or monomial models of chaotic inflation with fractional powers between 1 and 2.  相似文献   

3.
In the No-boundary Universe with d = 11 supergravity, under the S n × S 11–n Kaluza-Klein ansatz, the only seed instanton for the universe creation is a S 7 × S 4 space. It is proven that for the Freund-Rubin, Englert and Awada-Duff-Pope models the macroscopic universe in which we are living must be 4- instead of 7-dimensional without appealing to the anthropic principle.  相似文献   

4.
    
We focus on non‐linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss–Bonnet multiplet and discuss the emergence of a new scalar degree of freedom.  相似文献   

5.
    
We construct novel 7d supersymmetric gauge theories which include a Chern‐Simons‐like term on curved spaces. In order to so, we examine the supersymmetry constraints for E7‐branes in type IIA* theory, rather than making use of an off‐shell supergravity. We find two classes of solutions to the constraints, expressed in terms of a G2‐structure with non‐vanishing intrinsic torsion. The supersymmetric gauge theories are then obtained by coupling flat gauge theory to such supersymmetric backgrounds. Various examples are given, including round and squashed S7 as well as with M4 hyperkähler.  相似文献   

6.
    
We study the formation of primordial black holes (PBH) in the Starobinsky supergravity coupled to the nilpotent superfield describing Volkov–Akulov goldstino. By using the no-scale Kähler potential and a polynomial superpotential, we find that under certain conditions our model can describe effectively single-field inflation with the ultra-slow-roll phase that appears near a critical (near-inflection) point of the scalar potential. This can lead to the formation of PBH as part of (or whole) dark matter, while keeping the inflationary spectral tilt and the tensor-to-scalar ratio in good agreement with the current cosmic microwave background (CMB) bounds. After inflation, supersymmetry is spontaneously broken at the inflationary scale with the vanishing cosmological constant.  相似文献   

7.
    
We develop sequestered inflation models, where inflation occurs along flat directions in supergravity models derived from type IIB string theory. It is compactified on a orientifold with generalized fluxes and O3/O7-planes. At Step I, we use flux potentials which 1) satisfy tadpole cancellation conditions and 2) have supersymmetric Minkowski vacua with flat direction(s). The 7 moduli are split into heavy and massless Goldstone multiplets. At Step II we add a nilpotent multiplet and uplift the flat direction(s) of the type IIB string theory to phenomenological inflationary plateau potentials: α-attractors with 7 discrete values . Their cosmological predictions are determined by the hyperbolic geometry inherited from string theory. The masses of the heavy fields and the volume of the extra dimensions change during inflation, but this does not affect the inflationary dynamics.  相似文献   

8.
Arjun Berera 《Pramana》2009,72(1):169-182
This talk presents some recent work that has been done in inflationary cosmology. First a brief review is given of the inflation scenario and its basic models. After that, one of the main problems in developing inflationary models has been the requirement of a very flat inflation potential. In solving this problem, supersymmetry has played a major role, and the reasons will be discussed and a specific example of the SUSY hybrid model will be examined. Some problems introduced by SUSY such as the η and gravitino problems will then be discussed. Then in a different direction, the quintessential inflation model will be examined as a proposal where a single scalar field plays the role of both the inflaton at early time and the dark energy field later. The final topic covered is developments in understanding dissipation and particle production processes during the inflationary phase.   相似文献   

9.
The possibility that supersymmetry (SUSY) could be broken in a metastable vacuum has recently attracted renewed interest. In these proceedings we will argue that metastability is an attractive and testable scenario. The recent developments were triggered by the presentation of a simple and calculable model of metastable SUSY breaking by Intriligator, Seiberg and Shih (ISS), which we will briefly review. One of the main questions raised by metastability is, why did the universe end up in this vacuum. Using the ISS model as an example we will argue that in a large class of models the universe is automatically driven into the metastable state during the early hot phase and gets trapped there. This makes metastability a natural option from the cosmological point of view. However, it may be more than that. The phenomenologically required gaugino masses require the breaking of R-symmetry. However, in scenarios with a low supersymmetry breaking scale, e.g., gauge mediation a powerful theorem due to Nelson and Seiberg places this at odds with supersymmetry breaking in a truely stable state and metstability becomes (nearly) inevitable. Turning around one can now experimentally test whether gauge mediation is realised in nature thereby automatically testing the possibility of a metastability of the vacuum. Indeed, already the LHC may give us crucial information about the stability of the vacuum.  相似文献   

10.
Barotropic FRW cosmologies are presented from the standpoint of nonrelativistic supersymmetry. First, we reduce the barotropic FRW system of differential equations to simple harmonic oscillator differential equations. Employing the factorization procedure, the solutions of the latter equations are divided into the two classes of bosonic (nonsingular) and fermionic (singular) cosmological solutions. We next introduce a coupling parameter denoted by K between the two classes of solutions and obtain barotropic cosmologies with dissipative features acting on the scale factors and spatial curvature of the universe. The K-extended FRW equations in comoving time are presented in explicit form in the low coupling regime. The standard barotropic FRW cosmologies correspond to the dissipationless limit K = 0.  相似文献   

11.
    
The status of quantum cosmologies as testable models of the early universe is assessed in the context of inflation. While traditional Wheeler–DeWitt quantization is unable to produce sizable effects in the cosmic microwave background, the more recent loop quantum cosmology can generate potentially detectable departures from the standard cosmic spectrum. Thus, present observations constrain the parameter space of the model, which could be made falsifiable by near‐future experiments.  相似文献   

12.
We clarify and develop the results of a previous paper on the birth of a closed universe of negative spatial curvature and multiply connected topology. In particular we discuss the initial instanton and the second topology change in more detail. This is followed by a short discussion of the results.  相似文献   

13.
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N=2, d=5 Yang–Mills – SYM, N=2, d=5 – is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein–Cartan formulation of gravity and in the group manifold approach to gravity and supergravity theories. The group SYM, N=2, d=5, turns out to be the direct product of supergravity and a general gauge group .  相似文献   

14.
Quantum geometrodynamics is canonical quantum gravity with the three-metric as the configuration variable. Its central equation is the Wheeler–DeWitt equation. Here I give an overview of the status of this approach. The issues discussed include the problem of time, the relation to the covariant theory, the semiclassical approximation as well as applications to black holes and cosmology. I conclude that quantum geometrodynamics is still a viable approach and provides insights into both the conceptual and technical aspects of quantum gravity.
These considerations reveal that the concepts of spacetime and time itself are not primary but secondary ideas in the structure of physical theory. These concepts are valid in the classical approximation. However, they have neither meaning nor application under circumstances when quantum-geometrodynamical effects become important. ...There is no spacetime, there is no time, there is no before, there is no after. The question what happens “next” is without meaning [1].
Dedicated to the memory of John Archibald Wheeler.  相似文献   

15.
The probability representation for quantum states of the universe in which the states are described by a fair probability distribution instead of wave function (or density matrix) is developed to consider cosmological dynamics. The evolution of the universe state is described by standard positive transition probability (tomographic transition probability) instead of the complex transition probability amplitude (Feynman path integral) of the standard approach. The latter one is expressed in terms of the tomographic transition probability. Examples of minisuperspaces in the framework of the suggested approach are presented. Possibility of observational applications of the universe tomographs are discussed.  相似文献   

16.
The probability representation of quantum mechanics including propagators and tomograms of quantum states of the universe and its application to quantum gravity and cosmology are reviewed. The minisuperspaces modeled by oscillator, free pointlike particle and repulsive oscillator are considered. The notion of tomographic entropy and its properties are used to find some inequalities for the tomographic probability determining the quantum state of the universe. The sense of the inequality as a lower bound for the entropy is clarified.  相似文献   

17.
18.
In 1999, Faraoni wrote a simple second-order linear differential equation for FRW cosmologies with barotropic fluids. His results have been extended by Rosu, who employed techniques belonging to nonrelativistic supersymmetry to obtain time-dependent effective adiabatic indices. Further extensions are presented here using the known connection between the linear second-order differential equations and Dirac-like equations in the same supersymmetric context. These extensions are equivalent to adding an imaginary part to the effective adiabatic index, which is proportional to the mass parameter of the Dirac spinor. The natural physical interpretation of the imaginary part is related to the particular dissipation and instabilities of the effective barotropic FRW hydrodynamics that are introduced by means of this supersymmetric scheme.  相似文献   

19.
    
Cosmological models of the early or late universe exhibit (quasi) de Sitter space-times with different stability properties. Considering models derived from string theory, the swampland program does not provide for now a definite characterisation of this stability. In this work we focus on de Sitter solutions of 10d type II supergravities, candidates for classical de Sitter string backgrounds: surprisingly, all known examples are unstable with . We aim at proving the existence of such a systematic tachyon, and getting formally a bound on the value of . To that end, we develop three methods, giving us various sufficient conditions for having a tachyon upon assumptions, in analogy with de Sitter no-go theorems. Our analysis eventually indicates the existence of variety of different tachyons, and related bounds on . We use this knowledge to find 10 new de Sitter solutions of type IIB supergravity, that have tachyons of a different kind, higher values and new 6d geometries. One solution even appears to be stable, with however non-compact extra dimensions.  相似文献   

20.
A brief overview on the subject of Supersymmetric Quantum Cosmology (SQC) is presented here. Different approaches are described, all of them being inspired by the search of a square root of (quantum) General Relativity. Some new ideas in the form of a list of (still!) open problems and an extensive bibliography are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号