首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Nuclear Physics B》2001,609(3):499-517
We analyze the propagation of a scalar field in multidimensional theories which include kinetic corrections in the brane, as a prototype for gravitational interactions in a four-dimensional brane located in a (nearly) flat extra-dimensional bulk. We regularize the theory by introducing an infrared cutoff given by the size of the extra dimensions, R, and a physical ultraviolet cutoff of the order of the fundamental Planck scale in the higher-dimensional theory, M. We show that, having implemented cutoffs, the radius of the extra dimensions cannot be arbitrarily large for M≳1 TeV. Moreover, for finite radii, the gravitational effects localized on the brane can substantially alter the phenomenology of collider and/or table-top gravitational experiments. This phenomenology is dictated by the presence of a massless graviton, with standard couplings to the matter fields, and a massive graviton which couples to matter in a much stronger way. While graviton KK modes lighter than the massive graviton couple to matter in a standard way, the couplings to matter of the heavier KK modes are strongly suppressed.  相似文献   

2.
Using the black string between two branes as a model of a brane-world black hole, we compute the gravity-wave perturbations and identify the features arising from the additional polarizations of the graviton. The standard four-dimensional gravitational wave signal acquires late-time oscillations due to massive modes of the graviton. The Fourier transform of these oscillations shows a series of spikes associated with the masses of the Kaluza-Klein modes, providing in principle a spectroscopic signature of extra dimensions.  相似文献   

3.
We investigate the massive graviton contributions to 4D gravity in a 6D brane world scenario, whose bulk field content can include that of 6D chiral gauged supergravity. We consider a general class of solutions having 3-branes, 4D Poincaré symmetry and axisymmetry in the internal space. We show that these contributions, which we compute analytically, can be independent of the brane vacuum energy as a consequence of geometrical and topological properties of the above-mentioned codimension two brane world. These results support the idea that in such models the gravitational interactions may be decoupled from the brane vacuum energy.  相似文献   

4.
We discuss possible variations of the effective gravitational constant with length scale, predicted by most of alternative theories of gravity and unified models of physical interactions. After giving a brief general exposition, we review in more detail the predicted corrections to Newton’s law of gravity in diverse brane world models. We consider various configurations in 5 dimensions (flat, de Sitter and AdS branes in Einstein and Einstein–Gauss–Bonnet theories, with and without induced gravity and possible incomplete graviton localization), 5D multi-brane systems and some models in higher dimensions. A common feature of all models considered is the existence of corrections to Newton’s law at small radii comparable with the bulk characteristic length: at such radii, gravity on the brane becomes effectively multidimensional. Many models contain superlight perturbation modes, which modify gravity at large scale and may be important for astrophysics and cosmology.  相似文献   

5.
We study the recently proposed Covariant Renormalizable Gravity (CRG), which aims to provide a generally covariant ultraviolet completion of general relativity. We obtain a spacetime decomposed form—an Arnowitt–Deser–Misner (ADM) representation—of the CRG action. The action is found to contain time derivatives of the gravitational fields up to fourth order. Some ways to reduce the order of these time derivatives are considered. The resulting action is analyzed using the Hamiltonian formalism, which was originally adapted for constrained theories by Dirac. It is shown that the theory has a consistent set of constraints. It is, however, found that the theory exhibits four propagating physical degrees of freedom. This is one degree of freedom more than in Hořava–Lifshitz (HL) gravity and two more propagating modes than in general relativity. One extra physical degree of freedom has its origin in the higher order nature of the CRG action. The other extra propagating mode is a consequence of a projectability condition similarly as in HL gravity. Some additional gauge symmetry may need to be introduced in order to get rid of the extra gravitational degrees of freedom.  相似文献   

6.
In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changed allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.  相似文献   

7.
We suggest a class of generally covariant ghost-free nonlocal gravity models generating de Sitter or anti-de Sitter background with an arbitrary value of the effective cosmological constant and featuring a mechanism of dark matter simulation. These models interpolate between the general relativistic phase on a flat spacetime background and their strongly coupled infrared (anti-)de Sitter phase with two propagating massless graviton modes.  相似文献   

8.
Identifying the fundamental degrees of freedom of a black hole poses a long-standing puzzle. Recently Goldberger and Rothstein forwarded a theory of the low frequency degrees of freedom within the effective field theory approach, where they are relevancy ordered but of unclear physical origin. Here these degrees of freedom are identified with near-horizon but non-compact gravitational perturbations which are decomposed into delocalized multipoles. Their world-line (kinetic) action is determined within the classical effective field theory (CLEFT) approach and their interactions are discussed. The case of the long-wavelength scattering of a scalar wave off a Schwarzschild black hole is treated in some detail, interpreting within the CLEFT approach the equality of the leading absorption cross section with the horizon area. Fifth Award in the 2008 Essay Competition of the Gravity Research Foundation.  相似文献   

9.
In this paper we perform the calculation of the gravitational scattering amplitude for 4 massless scalars in quantum field theory and Type II superstring theory. We show that the results agree, providing an example of how gravity is incorporated in the superstring theory. During the calculation we quantize gravitational action to derive graviton propagator and interaction vertex with massless scalar. We also calculate general 3‐point and 4‐point scattering amplitudes in SST for open and closed massless strings in NS sector.  相似文献   

10.
The nonlocal theory of accelerated systems is extended to linear gravitational waves as measured by accelerated observers in Minkowski spacetime. The implications of this approach are discussed. In particular, the nonlocal modifications of helicity‐rotation coupling are pointed out and a nonlocal wave equation is presented for a special class of uniformly rotating observers. The results of this study, via Einstein's heuristic principle of equivalence, provide the incentive for a nonlocal classical theory of the gravitational field.  相似文献   

11.
The aim of these notes is to give an accessible and self‐contained introduction to the theory of gravitational waves as the theory of a relativistic symmetric tensor field in a Minkowski background spacetime. This is the approach of a particle physicist: the graviton is identified with a particular irreducible representation of the Poincaré group, corresponding to vanishing mass and spin two. It is shown how to construct an action functional giving the linear dynamics of gravitons, and how General Relativity can be obtained from it. The Hamiltonian formulation of the linear theory is examined in detail. We study the emission of gravitational waves and apply the results to the simplest case of a binary Newtonian system.  相似文献   

12.
In General Relativity, the graviton interacts in three-graviton vertex with a tensor that is not the energy-momentum tensor of the gravitational field. We consider the possibility that the graviton interacts with the definite gravitational energy-momentum tensor that we previously found in the G 2 approximation. This tensor in a gauge, where nonphysical degrees of freedom do not contribute, is remarkable, because it gives positive gravitational energy density for the Newtonian center in the same manner as the electromagnetic energy-momentum tensor does for the Coulomb center. We show that the assumed three-graviton vertex does not lead to contradiction with the precession of Mercury’s perihelion. In the S-matrix approach used here, the external gravitational field has only a subsidiary role, similar to the external field in quantum electrodynamics. This approach with the assumed vertex leads to the gravitational field that cannot be obtained from a consistent gravity equation.  相似文献   

13.
We formally discuss the post-Minkowskian limit of f(R)-gravity without adopting conformal transformations but developing all the calculations in the original Jordan frame. It is shown that such an approach gives rise, in general, together with the standard massless graviton, to massive scalar modes whose masses are directly related to the analytic parameters of the theory. In this sense, the presence of massless gravitons only is a peculiar feature of General Relativity. This fact is never stressed enough and could have dramatic consequences in detection of gravitational waves. Finally the role of curvature stress-energy tensor of f(R)-gravity is discussed showing that it generalizes the so called Landau-Lifshitz tensor of General Relativity. The further degrees of freedom, giving rise to the massive modes, are directly related to the structure of such a tensor.  相似文献   

14.
Physics of Particles and Nuclei Letters - In this paper we consider the degrees of freedom beyond the graviton present in the effective field theory for quantum gravity. We point out that the...  相似文献   

15.
We consider a generalised two brane Randall–Sundrum model with non-zero cosmological constant on the visible TeV brane. Massive Kaluza–Klein modes for various bulk fields namely graviton, gauge field and antisymmetric second rank Kalb–Ramond field in a such generalized Randall–Sundrum scenario are determined. The masses for the Kaluza–Klein excitations of different bulk fields are found to depend on the brane cosmological constant indicating interesting consequences in warped brane particle phenomenology.  相似文献   

16.
We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schrödinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with $m^2\ge 0$ , in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza–Klein (KK) excitations and to analytically compute the corrections to Newton’s law in the thin brane limit. In the first case we consider a novel solution with a mass gap in the spectrum of KK fluctuations with two bound states—the massless 4D graviton free of tachyonic instabilities and a massive KK excitation—as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the thin Randall–Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved with positive branes as in the Lykken–Randall (LR) model and the model is completely free of naked singularities. We also show that the scalar–tensor system is stable under scalar perturbations with no scalar modes localized on the braneworld configuration.  相似文献   

17.
Recent models which describe our world as a brane embedded in a higher dimensional space introduce new geometrical degrees of freedom, associated with spatial variations in the position of the brane and the size of the extra dimensions, that can be coherently excited by symmetry breaking in the early universe even on "mesoscopic" scales as large as 1 mm. The characteristic frequency and intensity of resulting gravitational radiation backgrounds are estimated. Extra dimensions with scale between 10(-14) and 1 mm can produce detectable backgrounds at frequencies f approximately 10(3) to 10(-4) Hz.  相似文献   

18.
We calculate small correction terms to gravitational potential near an asymmetric BPS brane embedded in a 5D AdS-Minkowski space in the context of supergravity. The normalizable wave functions of gravity fluctuations around the brane describe only massive modes. We compute such wave functions analytically in the thin wall limit. We estimate the correction to gravitational potential for small and long distances, and show that there is an intermediate range of distances in which we can identify 4D gravity on the brane below a crossover scale. The 4D gravity is metastable and for distances much larger than the crossover scale the 5D gravity is recovered.  相似文献   

19.
The recent LIGO observation sparked interest in the field of gravitational wave signals. Besides the gravitational wave observation the LIGO collaboration used the inspiraling black hole pair to constrain the graviton mass. Unlike general relativity, f(R) theories have a characteristic non-zero mass graviton. We apply this constraint on the graviton mass to viable f(R) models in order to find the effects on model parameters. We find it possible to constrain the parameter space with these gravity wave based observations. We consider the popular Hu–Sawicki model as a case study and find an appropriate parameter bracket. The result generalizes to other f(R) theories and can be used to constrain the parameter space.  相似文献   

20.
We construct a consistent model of gravity where the tensor graviton mode is massive, while linearized equations for scalar and vector metric perturbations are not modified. The Friedmann equation acquires an extra dark-energy component leading to accelerated expansion. The mass of the graviton can be as large as approximately (10(15) cm)(-1), being constrained by the pulsar timing measurements. We argue that nonrelativistic gravitational waves can comprise the cold dark matter and may be detected by the future gravitational wave searches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号