首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Measurement of azimuthal anisotropy is one of the most important study because of its relation to the initial stage. Especially, the elliptical anisotropy which is measured as the second coefficient of Fourier expansion of particle azimuthal distribution is believed to carry the information about the initial geometrical anisotropy. It seems the identified hadron v 2 depends on the number of quark contents of the hadron. The experimental result of quark number scaling of v 2 suggests quark level collectivity in the hot dense matter and quark coalescence mechanism to form hadron from quark matter via quark-gluon phase transition. The measured v 2 and p T spectra are analyzed with various assumptions based on the blast wave model in order to understand the freeze-out temperature and collective flow after the system expansion.  相似文献   

2.
We investigate the properties of hybrid stars consisting of quark matter in the core and hadron matter in outer region. The hadronic equation of state (EOS) is calculated by using nonlinear Walecka model. Strange baryons are included in the hadronic EOS calculation. The chiral colour dielectric (CCD) model, in which quarks are confined dynamically, is used to calculate quark matter EOS. We find that the phase transition from hadron to quark matter is possible in a narrow range of the parameters of nonlinear Walecka and CCD models. The transition is strong or weak first order depending on the parameters used. The EOS thus obtained, is used to study the properties of hybrid stars. We find that the calculated hybrid star properties are similar to those of pure neutron stars.  相似文献   

3.
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot, we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density, and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.  相似文献   

4.
5.
At the chiral restoration/deconfinement transition, most hadrons undergo a Mott transition from being bound states in the confined phase to resonances in the deconfined phase. We investigate the consequences of this qualitative change in the hadron spectrum on final state interactions of charmonium in hot and dense matter, and show that the Mott effect for D-mesons leads to a critical enhancement of the J/ψ dissociation rate. Anomalous J/ψ suppression in the NA50 experiment is discussed as well as the role of the Mott effect for the heavy-flavor kinetics in future experiments at the LHC. The status of our calculations of hadron–hadron cross sections using the quark interchange and chiral Lagrangian approaches is reviewed, and an ansatz for a unification of these schemes is given.  相似文献   

6.
We compare two classes of hybrid equations of state with a hadron-to-quark matter phase transition in their application to core collapse supernova simulations. The first one uses the quark bag model and describes the transition to three-flavor quark matter at low critical densities. The second one employs a Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model with parameters describing a phase transition to two-flavor quark matter at higher critical densities. These models possess a distinctly different temperature dependence of their transition densities which turns out to be crucial for the possible appearance of quark matter in supernova cores. During the early post-bounce accretion phase quark matter is found only if the phase transition takes place at sufficiently low densities as in the study based on the bag model. The increase critical density with increasing temperature, as obtained for our PNJL parametrization, prevents the formation of quark matter. The further evolution of the core collapse supernova as obtained applying the quark bag model leads to a structural reconfiguration of the central protoneutron star where, in addition to a massive pure quark matter core, a strong hydrodynamic shock wave forms and a second neutrino burst is released during the shock propagation across the neutrinospheres. We discuss the severe constraints in the freedom of choice of quark matter models and their parametrization due to the recently observed 2M ?? pulsar and their implications for further studies of core collapse supernovae in the QCD phase diagram.  相似文献   

7.
The phase transition of hadronic to quark matter and the boundaries of the hadron-quark coexistence phase are studied within the two Equation of State (EoS) models. The relativistic effective mean-field approach with constant and density-dependent meson-nucleon couplings is used to describe hadronic matter, and the MIT-Bag model is adopted to describe quark matter. The boundaries of the mixed phase for different Bag constants are obtained solving the Gibbs equations. We notice that the dependence on the Bag parameter of the critical temperatures (at zero chemical potential) can be well reproduced by a fermion ultrarelativistic quark gas model, without contribution from the hadron part. At variance, the critical chemical potentials (at zero temperature) are very sensitive to the EoS of the hadron sector. Hence, the contribution of the hadronic interaction is much more relevant for the determination of the transition to the quark-gluon plasma at finite baryon density and low T . Moreover, in the low-temperature and finite chemical potential region no solutions of the Gibbs conditions are existing for small Bag-constant values, B < (135 MeV)4 . Isospin effects in asymmetric matter appear important in the high chemical-potential regions at lower temperatures, of interest for the inner-core properties of neutron stars and for heavy-ion collisions at intermediate energies.  相似文献   

8.
We formulate an equation of state for strongly interacting matter, which leads to a phase transition from massive resonance excitation to ideal gas behaviour. The structural similarity to the Van der Waals equation is discussed, as are extensions to describe hadron to quark matter transitions.  相似文献   

9.
We have performed an experimental study of the α-fragments emitted from collisions between emulsion nuclei and heavy-ion projectiles at beam energies beyond 1A GeV. It is shown that the transverse momentum distributions of relativistic α-particles give evidence for two effective temperatures emission in high-energy heavy-ion collisions. The data might take on a new signature for the phase transition from hadron matter to quark matter.  相似文献   

10.
Bhattacharyya  A. B. Huit  Banerjee  Shibaji  Ghosh  Sanjay K.  Raha  Sibaji  Sinha  Bikash  Toki  Hiroshi 《Pramana》2003,60(5):909-919
A first-order quark hadron phase transition in the early Universe may lead to the formation of quark nuggets. The baryon number distribution of these quark nuggets have been calculated and it has been found that there are sizeable number of quark nuggets in the stable sector. The nuggets can clump and form bigger objects in the mass range of 0.0003M⊙ to 0.12M⊙. It has been discussed that these bigger objects can be possible candidates for cold dark matter.  相似文献   

11.
12.
We demonstrate that strangeness separates in the quark-hadron coexistence (even atT=0) and prompt kaon emission results in a strong enhancement of thes-quark abundance in the quark phase during the phase transition to hadron matter. Condensation into stabilized droplets of strange quark matter (“strangelets”) does occur during the phase transition. The so formed cool, compact, long-lived clusters could be experimentally observed by their smallZ/A-ratio. If the late quark matter phase is unstable, it should be observable by the delayed, correlated emission of several hyperons.  相似文献   

13.
We consider the influence of the bulk properties of nuclear matter, namely the ground state incompressibility and the effective nucleon mass, and of the MIT bag constant on the phase transition from hadron matter to quark gluon plasma. It is mainly the effective nucleon mass which determines the stiffness of the equation of state and therefore also the behaviour of the phase transition curves. The energy densities in the coexistence region are found to increase for finite chemical potentials and softer equations of state up to 10 GeV/fm3. For small bag constants and for softer nuclear equations of state the phase boundary exhibits unusual deformations, due to the fact that the phase transition sets in already at pressures not too far from the saturation value. Although this would increase the experimental possibility to create the QGP, it is more likely that one must regard bag constants in the range of the original MIT value as not producing a realistic behaviour of the quark-hadron matter phase transition in the context of an MIT bag equation of state for the quark side.  相似文献   

14.
The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot, we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density, and transit to pure quark matter at 4—5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.  相似文献   

15.
Nonperturbative QCD vacuum with two light quarks at finite temperature was studied in a hadron resonance-gas model. Temperature dependences of the quark and gluon condensates in the confined phase were obtained. It is shown that the quark condensate and one-half (chromoelectric component) of the gluon condensate are evaporated at the same temperature corresponding to the quark-hadron phase transition. With allowance for the temperature shift of hadron masses, the critical temperature was found to be T c ?190 MeV.  相似文献   

16.
We study the hadron-quark phase transition in a molecular dynamics (MD) of quark degrees of freedom. The hadron state at low density and temperature, and the deconfined quark state at high density and temperature are observed in our model. We investigate the equations of state and draw the phase diagram at wide baryon density and temperature range. We also discuss the transport property, e.g. viscosity, of $q\bar q$ matter. It is found that the ratio of the shear viscosity to the entropy density is less than one for quark matter.  相似文献   

17.
It is shown that in ideal relativistic hydrodynamics a phase transition from hadron to quark and gluon degrees of freedom in the nuclear matter equation of state leads to a minimum in the excitation function of the transverse collective flow.  相似文献   

18.
Compact stars such as neutron stars (NS) can have either hadronic or exotic states like strange quark or colour superconducting matter. Stars can also have a quark core surrounded by hadronic matter, known as hybrid stars (HS). The HS is likely to have a mixed phase in between the hadron and the quark phases. Observational results suggest huge surface magnetic field in certain NS. Therefore, we study here the effect of strong magnetic field on the respective equation of states (EOS) of matter under extreme conditions. We further study the hadron–quark phase transition in the interiors of NS giving rise to HS in the presence of strong magnetic field. The hadronic matter EOS is described based on RMF theory and we include the effects of strong magnetic fields leading to Landau quantization of the charged particles. For quark phase, we use the simple Massachusetts Institute of Technology (MIT) bag model, assuming density-dependent bag pressure and magnetic field. The magnetic field strength increases from the surface to the centre of the star. We construct the intermediate mixed phase using Glendenning conjecture. The magnetic field softens the EOS of both the matter phases. We finally study, the mass–radius relationship for such types of mixed HS, calculating their maximum mass, and compare them with the recent observations of pulsar PSR J1614-2230, which is about 2 solarmass.  相似文献   

19.
In high-temperature quark-gluon plasma and its subsequent hadronic matter created in a high-energy nucleus-nucleus collision, the quark-antiquark potential depends on the temperature. The temperature-dependent potential is expected to be derived from the free energy obtained in lattice gauge theory calculations. This requires one to study the relationship between the quark-antiquark potential and the quark-antiquark free energy. When the system's temperature is above the critical temperature, the potential of a heavy quark and a heavy antiquark almost equals the free energy, but the potential of a light quark and a light antiquark, of a heavy quark and a light antiquark and of a light quark and a heavy antiquark is substantially larger than the free energy. When the system's temperature is below the critical temperature, the quark-antiquark free energy can be taken as the quark-antiquark potential. This allows one to apply the quark-antiquark free energy to study hadron properties and hadron-hadron reactions in hadronic matter.  相似文献   

20.
The quark bag model is reviewed here with particular emphasis on spectroscopic applications and the discussion of exotic objects as baryonium, gluonium, and the quark phase of matter. The physical vacuum is pictured in the model as a two-phase medium. In normal phase of the vacuum, outside hadrons, the propagation of quark and gluon fields is forbidden. When small bubbles in a second phase are created in the medium of the normal phase with a characteristic size of one fermi, the hadron constituent fields may propagate inside the bubbles in normal manner. The bubble (bag) is stabilized against the pressure of the confined hadron constituent fields by vacuum pressure and surface tension. Inside the bag the colored quarks and gluons are governed by the equations of quantum chromodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号