首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
本文探讨了含周向内、外半椭圆表面裂纹圆柱壳体的曲率半径对其应力强度因子K_1的影响.主要内容包括三个部分:1.用光弹性法测定了含周向半椭圆表面裂纹圆柱壳的应力强度因子.2.用焦散线法测定了含周向半椭圆表面裂纹圆柱壳体的应力强度因子.3.拟合出了曲率修正因子F_c的近似计算公式.文章给出的结果与已有的理论结果吻合.曲率修正因子F_c的近似计算公式在给定的范围内能够满足工程上的需要.  相似文献   

2.
本文采用考虑裂纹面上具有任意分布载荷的线弹簧模型,在Kirchhoff板弯曲理论的假设下,将含半椭圆型表面裂纹的平板问题化为一组耦合的积分方程组进行求解,对均匀拉伸和纯弯曲两种载荷作用下的应力强度因子数值解,同经典线弹簧模型和有限元解进行了比较,并给出了经典线弹簧模型不能得到的、裂纹面上承受幂次不均匀应力分布时应力强度因子的数值解.  相似文献   

3.
由于现有断裂准则未能考虑表面裂纹前沿各点实际断裂阻力的变化,所作的表面裂纹准静态扩展模拟计算不能很好地预测几何形貌的真实变化规律。本文提出了一个考虑应力状态不同对实际断裂阻力影响的变阻力断裂准则;并以该准则作为表面裂纹前沿局部断裂扩展的判据,通过三维有限元法进行了表面裂纹准静态扩展的模拟计算;还将模拟预测值与用多试件法测得的实验值进行比较,验证了变阻力断裂准则作为裂纹稳态扩展判据的有效性  相似文献   

4.
表面裂纹平板应力强度因子的杂交应力元...   总被引:1,自引:0,他引:1  
  相似文献   

5.
张端重  柳春图 《力学学报》1989,21(3):359-363
  相似文献   

6.
残余应力下厚壁筒表面裂纹的应力强度因子计算   总被引:1,自引:0,他引:1  
本文首先介绍了边界元法计算裂纹尖端应力强度因子的基本理论,接着利用边界元法计算了在残余应力下不同厚壁筒内表面椭圆裂纹的应力强度因子,研究了其大不随椭圆裂纹不同而变化的规律,为厚壁筒结构的设计,制造以及疲劳寿命分析提供了许多有价值的参考资料。  相似文献   

7.
分析了空心车轴的旋转弯曲载荷的特点,建立了空心轴表面周向半椭圆裂纹的模型,给出了半椭圆裂纹的构形参数定义,即形状比、深度比和裂纹前缘相对位置。采用四分之一20节点等参退化奇异单元,通过有限元计算,模拟裂纹前沿的应力奇异性。在此基础上,计算了裂纹前缘表面点和中心点的应力强度因子随着裂纹扩展深度和旋转角度的变化。计算结果表明,对于给定的裂纹构形,在车轴的一个载荷循环中,裂纹前缘同一相对位置的应力强度因子是不断变化的,不同位置的应力强度因子在达到最大值的角度也是不同的,这就导致了裂纹前缘表面点在一些角度下的扩展是不对称的。这些结果为进一步研究空心轴表面裂纹的扩展路径和寿命提供了参考。  相似文献   

8.
为研究拉伸荷载下分支裂隙对破坏模式的影响,保持主裂隙参数不变,改变分支裂隙倾角和长度,利用扩展有限元方法模拟了弯折裂隙的动态扩展,总结了分支裂隙参数变化对破坏模式的影响.利用ABAQUS中的轮廓积分计算了分支裂隙尖端应力强度因子,并根据最大周向应力准则计算起裂角.结果表明:拉伸荷载下分支裂隙出现三种破坏模式;分支裂隙倾...  相似文献   

9.
本文用三维光弹法得到了含表面半椭圆裂纹板拉伸载荷下应力强度因子 K_Ⅰ沿整个裂纹前缘的分布及由不同裂纹深度引起的有限厚度效应,得到的实验结果与理论结果进行了比较和分析,并对角点上的奇异性进行了定性分析.  相似文献   

10.
采用参数化有限元方法,结合节点力法和循环迭代算法,对一有限厚矩形板表面有两个相邻共面半椭圆表面裂纹在拉伸载荷作用下进行了求解,得到了两裂纹在不同形状和相隔距离时的应力强度因子的影响系数,计算结果对含三维广布裂纹结构的剩余强度和疲劳寿命有参考意义.  相似文献   

11.
徐建新  曹旋  卿光辉 《力学与实践》2015,37(2):214-217,226
利用哈密顿正则方程的半解析法计算单元位移场和应力场,可以得到精度比较高的解.但此半解析法在计算应力尖峰区域时,该区域要细化网格.当裂纹扩展时,又要重新生成刚度矩阵进行求解,导致求解效率降低.利用扩展有限元处理裂纹的不连续性,当裂纹扩展时可以避免网格的重构.为充分利用状态向量方程和扩展有限元的优势,该文将两者结合起来分析材料的断裂问题:计算应力强度因子和模拟裂纹扩展.最后通过算例分析,验证了该文提出方案的可行性.  相似文献   

12.
用三维光弹性冻结应力实验技术与修正的多点超定法相结合研究了带凸缘弯曲梁应力集中区内表面裂纹的应力强度因子。分析了不同过渡圆弧的应力集中对两种表面裂纹(半圆形表面裂纹与前缘直线表面裂纹)的影响。用实验方法得到了应力强度因子放大系数的数值.结果表明,应力集中对浅裂纹的影响是更大的,是不可忽视的,但放大系数随表面裂纹的几何形状变化很小。这些对管节点的断裂力学评估提供了有价值的实验依据.  相似文献   

13.
本文基于钝裂纹端部位移场的渐近解和等参元构造方法,开发了一种新的适合钝裂纹端部应力场计算的扩展单元法,为了消除不同单元间的位移不协调又在扩展单元的基础上提出过渡单元.和常规的等参元相比,扩展单元除了以节点位移为待求未知量外,它们额外增加了Ⅰ型和Ⅱ型广义应力强度因子作为未知量.根据这个理论我们编制了有限元的程序并计算了算例,算例表明,在网格较大的情况下,与常规等参元计算方案相比,扩展单元和过渡单元法更好地接近理论值,它具有计算精度高、减少缺陷附近的单元数量和计算时间等优点.  相似文献   

14.
构造了一种新的三维奇异单元,提出了一种有效计算三维裂纹应力强度因子新的数值方法。该方法的计算结果与理论解和Newman解结果一致;与Panson等方法相比所使用的自由度数大大减小。结果表明该方法是一种高效、稳定可靠的计算方法。  相似文献   

15.
周琴  朱哲明  王雄  董玉清  周磊 《爆炸与冲击》2019,39(11):113201-1-113201-15

脆性材料内部含有大量裂纹,当某一裂纹扩展时,其他裂纹会对扩展裂纹产生影响。为了研究冲击载荷下,脆性材料内两裂纹的相互影响、连通规律及裂纹尖端应力强度因子的变化规律,利用有机玻璃板制作了含非平行双裂纹的实验试件,利用落板冲击设备进行了中低速冲击实验,结合有限元分析软件ABAQUS计算出裂纹尖端应力强度因子,利用有限差分软件AUTODYN进行了动态数值模拟研究,并将其模拟结果与实验结果进行对比分析。实验及模拟结果表明:裂纹破坏形态与AUTODYN数值模拟破坏形态基本一致;试件的断裂形态随着两裂纹间距不同而不同;裂纹间的相互影响程度随着裂纹间间距增大而减小;裂纹尖端应力强度因子KI随着裂纹间距的增大而减小,而KII随着裂纹间距增大而增大。

  相似文献   

16.
根据混凝土特性,本文提出了一种计算脆性材料三维裂缝应力强度因子的有限元方法,用以分析混凝土结构物中裂缝的稳定性及危害程度.其特点是不需要在裂缝尖端附近区域划分过细的网络,也不用引入特殊尖端单元,便于在工程中使用.本方法曾用于某拱坝坝肩裂缝稳定判别及应力重分布计算,效果良好.  相似文献   

17.
基于数字散斑相关方法测定Ⅰ型裂纹应力强度因子   总被引:1,自引:0,他引:1  
提出了一种通过数字散斑相关方法测定金属材料Ⅰ型裂纹尖端位置和应力强度因子的实验方法.实验采用疲劳试验机对含Ⅰ型缺口的Cr12MoV钢试件预制裂纹,通过数字散斑相关方法测试试件在三点弯曲加载条件下裂纹的扩展过程及裂尖区域的位移场.将位移场数据代入裂尖位移场方程组,采用牛顿-拉普森方法求解含未知参量的裂尖非线性位移场方程组,计算裂尖位置和应力强度因子.实验结果表明,采用该方法可以准确地测定金属材料Ⅰ型裂纹应力强度因子、裂尖位置及裂纹扩展长度,解决了以往研究中因不能准确测定裂纹尖端位置,而无法准确计算Ⅰ型裂纹裂尖断裂参数的难题,揭示了金属材料裂纹扩展过程中应力强度因子演化特征.  相似文献   

18.
复合型表面裂纹疲劳门槛应力的估算   总被引:1,自引:0,他引:1  
表面裂纹是工程构件常见的缺陷,由于实验数据的缺乏及其他困难,断裂力学应用于表面裂纹的疲劳扩展,其经验和成果还十分有限。本文利用复合型断裂准则,对圆棒试样表面小裂纹的门槛应力进行分析和估算,得到了较满意的结果。  相似文献   

19.
In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号