共查询到17条相似文献,搜索用时 62 毫秒
1.
结合卫星“微型核”的特点,研究电介质薄膜中的导热机理以及薄膜厚度对导热系数的影响.以结构较为简单、具有可靠势能函数,实验数据较为丰富和可靠的氩的(fcc)晶体为模型,采用平衡分子动力学方法(EMD)和各向异性非平衡分子动力学方法(NEMD)计算了氩晶体及其法向薄膜的热导率,并与实验结果进行比较.模拟结果表明,氩晶体纳米薄膜的热导率显著小于对应大体积晶体的实验值,具有明显的尺寸效应.在氩薄膜厚度为2.124—5.310nm的模拟范围内,薄膜的法向热导率随着薄膜厚度的增加而呈近似线性增加.
关键词:
热导率
纳米薄膜
尺寸效应
平衡分子动力学
非平衡分子动力学 相似文献
2.
3.
4.
分子动力学模拟铜薄膜的热导率 总被引:1,自引:0,他引:1
采用分子动力学(MD)方法模拟铜薄膜的热导率,给出了厚度在100~400nm、温度在100~600K范围内铜薄膜热导率对尺寸及温度的依赖关系. 相似文献
5.
6.
金属纳米薄膜作为一种典型的纳米材料,已广泛应用于信息技术领域。研究表明,随着金属薄膜特征尺寸的减小,金属薄膜体现出与常规不同的热输运特性。本文采用飞秒激光泵浦-探测实验方法,结合抛物两步模型和修正的抛物两步模型,对铝纳米薄膜热导率进行研究。结果表明,考虑了声子热导率修正的抛物两步模型比抛物两步模型更能准确描述热反射信号。拟合得到铝膜热导率分别为98 W·m~(-1)·K~(-1)和94 W.m~(-1)·K~(-1),小于铝的体材料热导率,铝纳米薄膜热导率具有尺度效应,同时拟合得到声子热导率为2.8 W·m~(-1)·K~(-1),提出一种利用飞秒激光泵浦-探测测量声子热导率的方法。 相似文献
7.
8.
采用平衡分子动力学方法及Buckingham势研究了金红石型TiO2薄膜与闪锌矿型ZnO薄膜构筑的纳米薄膜界面沿晶面[0001](z轴方向)的热导率.通过优化分子模拟初始条件中的截断半径rc和时间步后,计算并分析了平衡温度、薄膜厚度、薄膜截面大小对热导率的影响.研究表明,薄膜热导率受薄膜温度和厚度的影响很大,当温度由300 K升高600 K时,薄膜的热导率逐渐减小;当薄膜厚度由1.8 nm增大到5 nm时,热导率会逐渐增大;并在此基础
关键词:
热导率
分子动力学
2/ZnO纳米薄膜界面')" href="#">TiO2/ZnO纳米薄膜界面
数值模拟 相似文献
9.
采用非平衡分子动力学方法(NEMD)研究了室温(300 K)下厚度为2~32 nm的单晶硅薄膜的沿膜平面方向的热导率,并使用Debye-Einstein模型对模拟温度进行了量子修正。模拟表明薄膜面向热导率小于相应的大体积值,并随膜厚度减小而减小,具有显著的尺寸效应。在模拟范围内膜面向热导率略大于其法向热导率;与声子气动力论的定性结果一致。晶体的表面弛豫和表面重构现象导致了MD模拟中体系总内能的升高。 相似文献
10.
采用分子动力学方法模拟了碳在晶体硅基底上的沉积过程, 并分析计算了所沉积的类金刚石薄膜的面向及法向热导率. 对沉积过程的模拟表明, 薄膜密度及sp3杂化类型的碳原子所占比例均随沉积高度的增加而减小, 在碳原子以1 eV能量垂直入射的情况下, 在硅基底上沉积的薄膜密度约为2.8 g/cm3, sp3杂化类型的碳原子所占比例约为22%, 均低于碳在金刚石基底上沉积的情况. 采用Green-Kubo方法, 计算了所沉积类金刚石薄膜的热导率, 其面向热导率可以达到相同尺寸规则金刚石晶体的50%左右, 并且随着薄膜密度与sp3杂化类型碳原子所占比例的升高而升高. 相似文献
11.
12.
本文分析了经典分子动力学(Molecular Dynamics)技术在模拟厚度在纳米量级的单晶硅薄膜平行于薄膜平面方向的热导率时出现的用难,指出精确计算薄膜表面附近处的原子运动状态对于单晶硅纳米薄膜面向热导率的分子动力学模拟具有重要意义,并在此基础上提出采用基于分子动力学和预处理共轭梯度法(Preconditioned conjugate Gradients)的Ab Initio方案模拟面向热导率。 相似文献
13.
14.
纳米流体热导率和粘度的分子动力学模拟计算 总被引:5,自引:0,他引:5
本文采用分子动力学(MD)模拟来计算纳米流体比较重要的热物性:热导率和粘度,与已有实验结果比较符合 较好,为进一步研究纳米流体传热效率提供了依据。 相似文献
15.
16.
采用分子动力学方法模拟研究了未重构的金刚石/硅(001)面相接触时界面层原子的弛豫过程及所形成的异质界面的结构特征.硅碳二元系统中原子间的相互作用采用Tersoff多体经验势描述.弛豫前沿[110]与[110]方向界面碳硅原子数之比均为3∶2.界面碳硅原子总数之比为9∶4.弛豫后金刚石与硅界面处晶格匹配方式改变为[110]方向基本上以3∶2关系对准,而[110]方向大致以1∶1关系对准.相应地,界面碳硅原子总数之比接近3∶2.界面下方部分第二层硅原子在弛豫过程中向上迁移至界面是引起这种变化的原因,同时该层其他原子及其底下一到两个原子层厚度的区域在[001]方向上出现一定程度的无序化转变倾向.金刚石/硅异质界面处的硅碳原子发生强烈键合,形成平均键长为0.189nm的硅碳键.研究证实,晶格匹配主要呈现界面及其附近硅原子迎合界面碳原子排列的特点.
关键词:
金刚石
硅
异质界面
分子动力学 相似文献